Identifying influential nodes based on network representation learning in complex networks

被引:26
|
作者
Wei, Hao [1 ]
Pan, Zhisong [1 ]
Hu, Guyu [1 ]
Zhang, Liangliang [1 ]
Yang, Haimin [1 ]
Li, Xin [1 ]
Zhou, Xingyu [1 ]
机构
[1] Army Engn Univ PLA, Coll Command Informat Syst, Nanjing, Jiangsu, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 07期
关键词
CENTRALITY; SPREADERS; COMMUNITY; RANKING; IDENTIFICATION;
D O I
10.1371/journal.pone.0200091
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying influential nodes is an important topic in many diverse applications, such as accelerating information propagation, controlling rumors and diseases. Many methods have been put forward to identify influential nodes in complex networks, ranging from node centrality to diffusion-based processes. However, most of the previous studies do not take into account overlapping communities in networks. In this paper, we propose an effective method based on network representation learning. The method considers not only the overlapping communities in networks, but also the network structure. Experiments on real-world networks show that the proposed method outperforms many benchmark algorithms and can be used in large-scale networks.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Identifying Influential Nodes in Complex Networks Based on Weighted Formal Concept Analysis
    Sun, Zejun
    Wang, Bin
    Sheng, Jinfang
    Hu, Yixiang
    Wang, Yihan
    Shao, Junming
    IEEE ACCESS, 2017, 5 : 3777 - 3789
  • [32] Identifying influential nodes in complex networks based on improved local gravity model
    Wu, Yongqing
    Tang, Tianchang
    PRAMANA-JOURNAL OF PHYSICS, 2025, 99 (01):
  • [33] A novel method for identifying influential nodes in complex networks based on gravity model
    蒋沅
    杨松青
    严玉为
    童天驰
    代冀阳
    Chinese Physics B, 2022, 31 (05) : 908 - 918
  • [34] Identifying influential nodes in complex networks based on the inverse-square law
    Fei, Liguo
    Zhang, Qi
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 512 : 1044 - 1059
  • [35] Identifying multiple influential nodes based on region density curve in complex networks
    Kang Ling
    Xiang Bing-Bing
    Zhai Su-Lan
    Bao Zhong-Kui
    Zhang Hai-Feng
    ACTA PHYSICA SINICA, 2018, 67 (19)
  • [36] A novel method for identifying influential nodes in complex networks based on gravity model
    Jiang, Yuan
    Yang, Song-Qing
    Yan, Yu-Wei
    Tong, Tian-Chi
    Dai, Ji-Yang
    CHINESE PHYSICS B, 2022, 31 (05)
  • [37] InfGCN: Identifying influential nodes in complex networks with graph convolutional networks
    Zhao, Gouheng
    Jia, Peng
    Zhou, Anmin
    Zhang, Bing
    NEUROCOMPUTING, 2020, 414 (414) : 18 - 26
  • [38] A new evidential methodology of identifying influential nodes in complex networks
    Bian, Tian
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 101 - 110
  • [39] A neural diffusion model for identifying influential nodes in complex networks
    Ahmad, Waseem
    Wang, Bang
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [40] Identifying influential nodes in complex networks from global perspective
    Zhao, Jie
    Wang, Yunchuan
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2020, 133