Identifying influential nodes based on network representation learning in complex networks

被引:26
|
作者
Wei, Hao [1 ]
Pan, Zhisong [1 ]
Hu, Guyu [1 ]
Zhang, Liangliang [1 ]
Yang, Haimin [1 ]
Li, Xin [1 ]
Zhou, Xingyu [1 ]
机构
[1] Army Engn Univ PLA, Coll Command Informat Syst, Nanjing, Jiangsu, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 07期
关键词
CENTRALITY; SPREADERS; COMMUNITY; RANKING; IDENTIFICATION;
D O I
10.1371/journal.pone.0200091
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying influential nodes is an important topic in many diverse applications, such as accelerating information propagation, controlling rumors and diseases. Many methods have been put forward to identify influential nodes in complex networks, ranging from node centrality to diffusion-based processes. However, most of the previous studies do not take into account overlapping communities in networks. In this paper, we propose an effective method based on network representation learning. The method considers not only the overlapping communities in networks, but also the network structure. Experiments on real-world networks show that the proposed method outperforms many benchmark algorithms and can be used in large-scale networks.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks
    Zhao, Gouheng
    Jia, Peng
    Huang, Cheng
    Zhou, Anmin
    Fang, Yong
    IEEE ACCESS, 2020, 8 : 65462 - 65471
  • [2] Identifying influential nodes in complex networks based on AHP
    Bian, Tian
    Hu, Jiantao
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 479 : 422 - 436
  • [3] Identifying influential nodes in complex networks
    Chen, Duanbing
    Lu, Linyuan
    Shang, Ming-Sheng
    Zhang, Yi-Cheng
    Zhou, Tao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1777 - 1787
  • [4] Identifying influential nodes in complex networks based on network embedding and local structure entropy
    Lu, Pengli
    Yang, Junxia
    Zhang, Teng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (08):
  • [5] Identifying influential nodes in complex networks based on expansion factor
    Liu, Dong
    Jing, Yun
    Chang, Baofang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):
  • [6] Identifying influential nodes in complex networks based on spreading probability
    Ai, Jun
    He, Tao
    Su, Zhan
    Shang, Lihui
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [7] Identifying influential nodes in complex networks based on Neighbours and edges
    Zengzhen Shao
    Shulei Liu
    Yanyu Zhao
    Yanxiu Liu
    Peer-to-Peer Networking and Applications, 2019, 12 : 1528 - 1537
  • [8] A graph convolutional network model based on regular equivalence for identifying influential nodes in complex networks
    Wu, Yihang
    Hu, Yanmei
    Yin, Siyuan
    Cai, Biao
    Tang, Xiaochuan
    Li, Xiangtao
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [9] Identification of Key Nodes in Complex Networks Based on Network Representation Learning
    Zhang, Heping
    Zhang, Sicong
    Xie, Xiaoyao
    Zhang, Taihua
    Yu, Guojun
    IEEE ACCESS, 2023, 11 (128175-128186): : 128175 - 128186
  • [10] Identifying influential nodes based on graph signal processing in complex networks
    赵佳
    喻莉
    李静茹
    周鹏
    Chinese Physics B, 2015, (05) : 643 - 652