Coupled Cluster Molecular Dynamics of Condensed Phase Systems Enabled by Machine Learning Potentials: Liquid Water Benchmark

被引:63
作者
Daru, Janos [1 ]
Forbert, Harald [2 ]
Behler, Joerg [3 ,4 ,5 ]
Marx, Dominik [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
[2] Ruhr Univ Bochum, Ctr Solvat Sci ZEMOS, D-44780 Bochum, Germany
[3] Univ Gottingen, Inst Phys Chem, Theoret Chem, Tammannstr 6, D-37077 Gottingen, Germany
[4] Ruhr Univ Bochum, Lehrstuhl Theoret Chem II, D-44780 Bochum, Germany
[5] Res Alliance Ruhr, Res Ctr Chem Sci & Sustainabil, D-44780 Bochum, Germany
关键词
DENSITY-FUNCTIONAL THEORY; SELF-DIFFUSION; NMR RELAXATION; APPROXIMATIONS; REORIENTATION; SIMULATIONS; DEPENDENCE; ACCURACY; SPECTRUM; PROTON;
D O I
10.1103/PhysRevLett.129.226001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coupled cluster theory is a general and systematic electronic structure method, but in particular the highly accurate "gold standard" coupled cluster singles, doubles and perturbative triples, CCSD(T), can only be applied to small systems. To overcome this limitation, we introduce a framework to transfer CCSD(T) accuracy of finite molecular clusters to extended condensed phase systems using a high-dimensional neural network potential. This approach, which is automated, allows one to perform high-quality coupled cluster molecular dynamics, CCMD, as we demonstrate for liquid water including nuclear quantum effects. The machine learning strategy is very efficient, generic, can be systematically improved, and is applicable to a variety of complex systems.
引用
收藏
页数:6
相关论文
共 100 条
[1]   Communication: Energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water [J].
Alfe, D. ;
Bartok, A. P. ;
Csanyi, G. ;
Gillan, M. J. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (22)
[2]  
aps, US, DOI [10.1103/PhysRevLett.129.226001, DOI 10.1103/PHYSREVLETT.129.226001]
[3]   High-dimensional neural network potentials for metal surfaces: A prototype study for copper [J].
Artrith, Nongnuch ;
Behler, Joerg .
PHYSICAL REVIEW B, 2012, 85 (04)
[4]   Molecular Reorientation of Liquid Water Studied with Femtosecond Midinfrared Spectroscopy [J].
Bakker, H. J. ;
Rezus, Y. L. A. ;
Timmer, R. L. A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (46) :11523-11534
[5]   Vibrational Spectroscopy as a Probe of Structure and Dynamics in Liquid Water [J].
Bakker, H. J. ;
Skinner, J. L. .
CHEMICAL REVIEWS, 2010, 110 (03) :1498-1517
[6]   Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies [J].
Balabin, Roman M. ;
Lomakina, Ekaterina I. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (07)
[7]   Coupled-cluster theory in quantum chemistry [J].
Bartlett, Rodney J. ;
Musial, Monika .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :291-352
[8]   Machine learning unifies the modeling of materials and molecules [J].
Bartok, Albert P. ;
De, Sandip ;
Poelking, Carl ;
Bernstein, Noam ;
Kermode, James R. ;
Csanyi, Gabor ;
Ceriotti, Michele .
SCIENCE ADVANCES, 2017, 3 (12)
[9]   Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water [J].
Bartok, Albert P. ;
Gillan, Michael J. ;
Manby, Frederick R. ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 88 (05)
[10]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)