Unusual sum rule for Clebsch-Gordan coefficients

被引:1
作者
Pain, Jean-Christophe [1 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
关键词
Clebsch-Gordan coefficients; 3j symbols; Sum rules; LEGENDRE FUNCTIONS; PRODUCTS; IDENTITY; RACAH; PROOF;
D O I
10.1007/s11005-019-01181-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new sum rule for Clebsch-Gordan coefficients using generalized characters of irreducible representations of the rotation group. The identity is obtained from an integral involving Gegenbauer ultraspherical polynomials. A similar procedure can be applied for other types of integrals of such polynomials and may therefore lead to the derivation of further new relations.
引用
收藏
页码:2485 / 2490
页数:6
相关论文
共 27 条
[1]   NEW SUM-RULES FOR RACAH AND CLEBSCH-GORDAN-COEFFICIENTS [J].
ANCARANI, LU .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09) :2225-2231
[3]   NONTRIVIAL ZEROS OF WEIGHT 1 3J AND 6J COEFFICIENTS - RELATION TO DIOPHANTINE EQUATIONS OF EQUAL SUMS OF LIKE POWERS [J].
BRUDNO, S ;
LOUCK, JD .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) :2092-2095
[4]   Algebraic proof of a sum rule occurring in Stark broadening of hydrogen lines [J].
Casini, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (07) :3435-3445
[5]  
Cowan RD., 1981, THEORY ATOMIC STRUCT
[6]  
DEMEYER HE, 1978, J PHYS A-MATH GEN, V11, P697, DOI 10.1088/0305-4470/11/4/010
[7]   A SIMPLE SUM FORMULA FOR CLEBSCH-GORDAN-COEFFICIENTS [J].
DIN, AM .
LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (03) :207-211
[8]   NOVEL IDENTITIES FOR SIMPLE N-J SYMBOLS [J].
DUNLAP, BI ;
JUDD, BR .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (02) :318-319
[9]  
Edmonds A. R., 1996, Angular Momentum in Quantum Mechanics
[10]   USUAL AND UNUSUAL SUMMATION RULES OVER J ANGULAR-MOMENTUM [J].
ELBAZ, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (04) :728-731