Error correction on a tree: An instanton approach

被引:11
作者
Chernyak, V
Chertkov, M
Stepanov, MG
Vasic, B
机构
[1] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[4] Russian Acad Sci, Inst Automat & Electrometry, Novosibirsk 630090, Russia
[5] Univ Arizona, Dept Elect Engn, Tucson, AZ 85721 USA
关键词
D O I
10.1103/PhysRevLett.93.198702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a method that allows analytical or semianalytical estimating of the post-error correction bit error rate (BER) when a forward-error correction is utilized for transmitting information through a noisy channel. The generic method that applies to a variety of error-correction schemes in the regimes where the BER is low is illustrated using the example of a finite-size code approximated by a treelike structure. Exploring the statistical physics formulation of the problem we find that the BER decreases with the signal-to-noise ratio nonuniformly, i.e., crossing over through a sequence of phases. The higher the signal-to-noise ratio the lower the symmetry of the phase dominating BER.
引用
收藏
页码:198702 / 1
页数:4
相关论文
共 13 条
[11]   SPIN-GLASS MODELS AS ERROR-CORRECTING CODES [J].
SOURLAS, N .
NATURE, 1989, 339 (6227) :693-695
[12]   Combinatorial constructions of low-density parity-check codes for iterative decoding [J].
Vasic, B ;
Milenkovic, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) :1156-1176
[13]   Error-correcting code on a cactus: A solvable model [J].
Vicente, R ;
Saad, D ;
Kabashima, K .
EUROPHYSICS LETTERS, 2000, 51 (06) :698-704