Error correction on a tree: An instanton approach

被引:11
作者
Chernyak, V
Chertkov, M
Stepanov, MG
Vasic, B
机构
[1] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[4] Russian Acad Sci, Inst Automat & Electrometry, Novosibirsk 630090, Russia
[5] Univ Arizona, Dept Elect Engn, Tucson, AZ 85721 USA
关键词
D O I
10.1103/PhysRevLett.93.198702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a method that allows analytical or semianalytical estimating of the post-error correction bit error rate (BER) when a forward-error correction is utilized for transmitting information through a noisy channel. The generic method that applies to a variety of error-correction schemes in the regimes where the BER is low is illustrated using the example of a finite-size code approximated by a treelike structure. Exploring the statistical physics formulation of the problem we find that the BER decreases with the signal-to-noise ratio nonuniformly, i.e., crossing over through a sequence of phases. The higher the signal-to-noise ratio the lower the symmetry of the phase dominating BER.
引用
收藏
页码:198702 / 1
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 1935, P ROY SOC A-MATH PHY, DOI DOI 10.1098/RSPA.1935.0122
[2]  
Di CY, 2002, IEEE T INFORM THEORY, V48, P1570, DOI 10.1109/TIT.2002.1003839
[3]  
Gallager RG, 1963, LOW DENSITY PARITY C
[4]   O STRUKTURE ENERGETICHESKOGO SPEKTRA I KVANTOVYKH SOSTOYANIYAKH NEUPORYADOCHENNYKH KONDENSIROVANNYKH SISTEM [J].
LIFSHITS, IM .
USPEKHI FIZICHESKIKH NAUK, 1964, 83 (04) :617-663
[5]   Good error-correcting codes based on very sparse matrices [J].
MacKay, DJC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :399-431
[6]   The glassy phase of Gallager codes [J].
Montanari, A .
EUROPEAN PHYSICAL JOURNAL B, 2001, 23 (01) :121-136
[7]  
Pearl J., 1989, Probabilistic reasoning in intelligent systems: networks of plausible inference, DOI DOI 10.1016/C2009-0-27609-4
[8]   The capacity of low-density parity-check codes under message-passing decoding [J].
Richardson, TJ ;
Urbanke, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :599-618
[9]   FINITE-TEMPERATURE ERROR-CORRECTING CODES [J].
RUJAN, P .
PHYSICAL REVIEW LETTERS, 1993, 70 (19) :2968-2971
[10]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423