Asymptotically exact minimax estimation in sup-norm for anisotropic Holder classes

被引:11
作者
Bertin, K [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
关键词
anisotropic Holder class; minimax exact constant; uniform norm; white noise model;
D O I
10.3150/bj/1099579160
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Gaussian white noise model and study the estimation of a function f in the uniform norm assuming that f belongs to a Holder anisotropic class. We give the minimax rate of convergence over this class and determine the minimax exact constant and an asymptotically exact estimator.
引用
收藏
页码:873 / 888
页数:16
相关论文
共 18 条
[11]  
KOROSTELEV AP, 1993, TEOR VEROYA PRIMEN, V38, P857
[12]  
Lepski O. V., 1992, ADV SOVIET MATH, V12, P87
[13]   Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point [J].
Lepski, OV ;
Tsybakov, AB .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (01) :17-48
[14]  
Lifshits M. A., 1995, Gaussian random functions, V322
[15]  
Neumann MH, 1997, ANN STAT, V25, P38
[16]  
NUSSBAUM M, 1986, THEORY PROBABILITY I, V31, P118
[17]  
PITERBARG V, 1996, TRANSL MATH MONOGR, V148
[18]   OPTIMAL GLOBAL RATES OF CONVERGENCE FOR NONPARAMETRIC REGRESSION [J].
STONE, CJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1040-1053