Asymptotically exact minimax estimation in sup-norm for anisotropic Holder classes

被引:11
作者
Bertin, K [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
关键词
anisotropic Holder class; minimax exact constant; uniform norm; white noise model;
D O I
10.3150/bj/1099579160
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Gaussian white noise model and study the estimation of a function f in the uniform norm assuming that f belongs to a Holder anisotropic class. We give the minimax rate of convergence over this class and determine the minimax exact constant and an asymptotically exact estimator.
引用
收藏
页码:873 / 888
页数:16
相关论文
共 18 条
[1]  
Adler RJ, 1990, INTRO CONTINUITY EXT
[2]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[3]  
BERTIN K, 2004, IN PRESS J STAT PLAN
[4]   ASYMPTOTIC MINIMAX RISK FOR SUP-NORM LOSS - SOLUTION VIA OPTIMAL RECOVERY [J].
DONOHO, DL .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (02) :145-170
[5]  
GIHMAN I, 1974, THEORY STOCHASTIC PR, V1
[6]  
Gradshteyn IS, 1965, TABLE INTEGRALS SERI
[7]  
Ibragimov IA, 1981, STAT ESTIMATION ASYM
[8]   Nonlinear estimation in anisotropic multi-index denoising [J].
Kerkyacharian, G ;
Lepski, O ;
Picard, D .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 121 (02) :137-170
[9]  
Klemelä J, 2001, ANN STAT, V29, P1567
[10]   The asymptotic minimax constant for sup-norm loss in nonparametric density estimation [J].
Korostelev, A ;
Nussbaum, M .
BERNOULLI, 1999, 5 (06) :1099-1118