Convolutional Basis Pursuit Denoising of Spectral Images Using a Tri-Dimensional Sparse Representation

被引:4
|
作者
Barajas-Solano, Crisostomo [1 ]
Garcia, Hans [1 ]
Arguello, Henry [2 ]
机构
[1] Univ Ind Santander, Dept Elect Engn, Bucaramanga, Colombia
[2] Univ Ind Santander, Dept Comp Sci Engn, Bucaramanga, Colombia
关键词
basis pursuit; convolutional dictionaries; denoising;
D O I
10.1109/stsiva.2019.8730285
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spectral images (SI) can be represented as 3D arrays of spatial information across a multitude of wavelengths, plus some noise intrinsic to the capturing process. This must be removed to improve SI's processing and analysis. Basis pursuit allows to remove the noise by finding a noise-free sparse representation of the original image. State-of-the-art analysis basis, like the one proposed by Arce et. al., allow to sparsely represent SIs. In the other hand, synthesis dictionaries, like Wohlberg's CBPDN allow to represent independently each spectral band, missing the spectral correlation. This work proposes to sparsely represent an SI using a synthesis dictionary, composed by a collection of 3D convolutional filters, within a basis pursuit scheme for noise removal. The simulation results show that the proposed synthesis dictionaries can outperform the analysis basis at recovering spectral images at different levels of noise, using both full-frequencies and high-frequencies SIs.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Denoising and Baseline Correction of ECG Signals using Sparse Representation
    Zhou, Yichao
    Hu, Xiyuan
    Tang, Zhenmin
    Ahn, Andrew C.
    2015 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2015), 2015,
  • [32] Image Denoising Using Sparse Representation and Principal Component Analysis
    Abedini, Maryam
    Haddad, Horriyeh
    Masouleh, Marzieh Faridi
    Shahbahrami, Asadollah
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2022, 22 (04)
  • [33] Human detection in images using sparse representation
    Yang, Qi
    Xue, Dingyu
    Wang, Zhen
    Journal of Computational Information Systems, 2012, 8 (09): : 3689 - 3696
  • [34] Gender Classification Using Facial Images and Basis Pursuit
    Khorsandi, Rahman
    Abdel-Mottaleb, Mohamed
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PT I, 2013, 8047 : 294 - 301
  • [35] Improving brain MRI denoising using convolutional AutoEncoder and sparse representations
    Velayudham, A.
    Kumar, K. Madhan
    Priya, M. S. Krishna
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [36] Spectral Video Compression Using Convolutional Sparse Coding
    Barajas-Solano, C.
    Ramirez, J. M.
    Arguello, H.
    2020 DATA COMPRESSION CONFERENCE (DCC 2020), 2020, : 253 - 262
  • [37] Image Denoising Using Convolutional Sparse Coding Network with Dry Friction
    Zhang, Yali
    Wang, Xiaofan
    Wang, Fengpin
    Wang, Jinjia
    COMPUTER VISION - ACCV 2022, PT I, 2023, 13841 : 587 - 601
  • [38] Denoising sparse images from GRAPPA using the nullspace method
    Weller, Daniel S.
    Polimeni, Jonathan R.
    Grady, Leo
    Wald, Lawrence L.
    Adalsteinsson, Elfar
    Goyal, Vivek K.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (04) : 1176 - 1189
  • [39] Simultaneous image denoising and completion through convolutional sparse representation and nonlocal self-similarity
    Yuan, Weimin
    Wang, Yuanyuan
    Fan, Ruirui
    Zhang, Yuxuan
    Wei, Guangmei
    Meng, Cai
    Bai, Xiangzhi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [40] Denoising of images using designed signal dependent frames and matching pursuit
    Engan, K
    Skretting, K
    Husoy, JH
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 653 - 656