Generalized Bernstein-Durrmeyer operators of blending type

被引:5
作者
Kajla, Arun [1 ]
Goyal, Meenu [2 ]
机构
[1] Cent Univ Haryana, Dept Math, Mahendragarh 123031, Haryana, India
[2] Thapar Univ, Sch Math, Patiala, Punjab, India
关键词
Positive approximation; Global approximation; Rate of convergence; Modulus of continuity; Steklov mean; APPROXIMATION;
D O I
10.1007/s13370-019-00705-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we present the Durrmeyer variant of generalized Bernstein operators that preserve the constant functions involving a non-negative parameter rho. We derive the approximation behaviour of these operators including a global approximation theorem via Ditzian-Totik modulus of continuity and the order of convergence for the Lipschitz type space. Furthermore, we study a Voronovskaja type asymptotic formula, local approximation theorem by means of second order modulus of smoothness and the rate of approximation for absolutely continuous functions having a derivative equivalent to a function of bounded variation. Lastly, we illustrate the convergence of these operators for certain functions using Maple software.
引用
收藏
页码:1103 / 1118
页数:16
相关论文
共 36 条
[1]  
Acar T., 2014, General Mathematics, V22, P27
[2]   Approximation by modified Szasz-Durrmeyer operators [J].
Acar, Tuncer ;
Ulusoy, Gulsum .
PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (01) :64-75
[3]   Asymptotic Formulas for Generalized Szasz-Mirakyan Operators [J].
Acar, Tuncer .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 :233-239
[4]   On Pointwise Convergence of q-Bernstein Operators and Their q-Derivatives [J].
Acar, Tuncer ;
Aral, Ali .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (03) :287-304
[5]   Rate of convergence for generalized Szasz operators [J].
Acar, Tuncer ;
Gupta, Vijay ;
Aral, Ali .
BULLETIN OF MATHEMATICAL SCIENCES, 2011, 1 (01) :99-113
[6]  
ACU AM, 2018, CONSTRUCTIVE MATH AN, V1, P113, DOI DOI 10.33205/CMA.478408
[7]  
Agrawal PN, 2015, BOLL UNIONE MAT ITAL, V8, P169, DOI 10.1007/s40574-015-0034-0
[8]   Generalized Baskakov-Szász type operators [J].
Agrawal, P.N. ;
Gupta, Vijay ;
Sathish Kumar, A. ;
Kajla, Arun .
Applied Mathematics and Computation, 2014, 236 :311-324
[9]  
Ana Acu, 2016, RESULTS MATH, V72, P1161, DOI [10.1007/s00025-016-0603-2, DOI 10.1007/S00025-016-0603-2]
[10]  
[Anonymous], 1987, Moduli of Smoothness