ON THE GEOMETRY OF RATIONAL BEZIER CURVES

被引:2
|
作者
Ceylan, Ayse Yilmaz [1 ]
Turhan, Tunahan [2 ]
Tukel, Gozde Ozkan [3 ]
机构
[1] Akdeniz Univ, Dept Math, Antalya, Turkey
[2] Suleyman Demirel Univ, Dept Math & Sci Educ, Isparta, Turkey
[3] Isparta Univ Appl Sci, Isparta, Turkey
来源
HONAM MATHEMATICAL JOURNAL | 2021年 / 43卷 / 01期
关键词
Darboux frame field; Geodesic curvature; Rational Bezier curve; 2-sphere;
D O I
10.5831/HMJ.2021.43.1.88
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to assign a movable frame to an arbitrary point of a rational Bezier curve on the 2-sphere S-2 in Euclidean 3-space R-3 to provide a better understanding of the geometry of the curve. Especially, we obtain the formula of geodesic curvature for a quadratic rational Bezier curve that allows a curve to be characterized on the surface. Moreover, we give some important results and relations for the Darboux frame and geodesic curvature of a such curve. Then, in specific case, given characterizations for the quadratic rational Bezier curve are illustrated on a unit 2-sphere.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [21] A generalization of rational Bernstein-Bezier curves
    Disibuyuk, Cetin
    Oruc, Halil
    BIT NUMERICAL MATHEMATICS, 2007, 47 (02) : 313 - 323
  • [22] TIGHTER CONVEX HULLS FOR RATIONAL BEZIER CURVES
    FARIN, G
    COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (02) : 123 - 125
  • [23] Self-intersections of rational Bezier curves
    Zhu, Chun-Gang
    Zhao, Xuan-Yi
    GRAPHICAL MODELS, 2014, 76 : 312 - 320
  • [25] Polynomial approximation of rational Bezier curves with constraints
    Lewanowicz, Stanislaw
    Wozny, Pawel
    Keller, Pawel
    NUMERICAL ALGORITHMS, 2012, 59 (04) : 607 - 622
  • [26] The geometry of optimal degree reduction of Bezier curves
    Brunnett, G
    Schreiber, T
    Braun, J
    COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (08) : 773 - 788
  • [27] Geometry of optimal degree reduction of Bezier curves
    Universitaet Kaiserslautern, Kaiserslautern, Germany
    Comput Aided Geom Des, 8 (773-788):
  • [28] Limit curve of H-Bezier curves and rational Bezier curves in standard form with the same weight
    Lee, Ryeong
    Ahn, Young Joon
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 281 : 1 - 9
  • [29] Reparameterization of piecewise rational Bezier curves and its applications
    Tokuyama, Y
    Konno, K
    VISUAL COMPUTER, 2001, 17 (06): : 329 - 336
  • [30] HERMITE GEOMETRIC INTERPOLATION BY RATIONAL BEZIER SPATIAL CURVES
    Jaklic, Gasper
    Kozak, Jernej
    Krajnc, Marjeta
    Vitrih, Vito
    Zagar, Emil
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2695 - 2715