Broken rotation symmetry in the fractional quantum Hall system

被引:48
作者
Musaelian, K [1 ]
Joynt, R [1 ]
机构
[1] HELSINKI UNIV TECHNOL,PHYS MAT LAB,SF-02150 ESPOO,FINLAND
关键词
D O I
10.1088/0953-8984/8/8/002
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We demonstrate that the two-dimensional electron system in a strong perpendicular magnetic field has stable states which break rotational but not translational symmetry. The Laughlin fluid becomes unstable to these states in quantum wells whose thickness exceeds a critical value which depends on the electron density. The order parameter at 1/3 reduced density resembles that of a nematic liquid crystal, in that a residual twofold rotation axis is present in the low-symmetry phase. At filling factors 1/5 and 1/7, there are states with fourfold and sixfold axes, as well. We discuss the experimental detection of these phases.
引用
收藏
页码:L105 / L110
页数:6
相关论文
共 13 条
[1]   COOPERATIVE PHENOMENA BELOW MELTING OF THE ONE-COMPONENT TWO-DIMENSIONAL PLASMA [J].
CHOQUARD, P ;
CLEROUIN, J .
PHYSICAL REVIEW LETTERS, 1983, 50 (26) :2086-2089
[2]   HALL-EFFECT IN A MAGNETIC-FIELD-LOCALIZED 2-DIMENSIONAL ELECTRON-SYSTEM [J].
GOLDMAN, VJ ;
SU, B ;
WANG, JK .
PHYSICAL REVIEW B, 1993, 47 (16) :10548-10554
[4]  
MORF R, 1981, PHYSICS INTERCALATIO, P252
[5]  
MUSAELIAN K, IN PRESS
[6]   NEW STOCHASTIC METHOD FOR SYSTEMS WITH BROKEN TIME-REVERSAL SYMMETRY - 2D FERMIONS IN A MAGNETIC-FIELD [J].
ORTIZ, G ;
CEPERLEY, DM ;
MARTIN, RM .
PHYSICAL REVIEW LETTERS, 1993, 71 (17) :2777-2780
[7]   A SIMPLE-MODEL FOR FRACTIONAL HALL-EFFECT [J].
POKROVSKY, VL ;
TALAPOV, AL .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (23) :L691-L694
[8]   LAUGHLIN-LIQUID WIGNER-SOLID TRANSITION AT HIGH-DENSITY IN WIDE QUANTUM-WELLS [J].
PRICE, R ;
ZHU, XJ ;
DASSARMA, S ;
PLATZMAN, PM .
PHYSICAL REVIEW B, 1995, 51 (03) :2017-2020
[9]   COLLAPSE OF THE FRACTIONAL QUANTUM HALL-EFFECT IN AN ELECTRON-SYSTEM WITH LARGE LAYER THICKNESS [J].
SHAYEGAN, M ;
JO, J ;
SUEN, YW ;
SANTOS, M ;
GOLDMAN, VJ .
PHYSICAL REVIEW LETTERS, 1990, 65 (23) :2916-2919
[10]   TWO-DIMENSIONAL MELTING [J].
STRANDBURG, KJ .
REVIEWS OF MODERN PHYSICS, 1988, 60 (01) :161-207