Integrating Semantic Segmentation and Retinex Model for Low Light Image Enhancement

被引:93
作者
Fan, Minhao [1 ]
Wang, Wenjing [1 ]
Yang, Wenhan [2 ]
Liu, Jiaying [1 ]
机构
[1] Peking Univ, Beijing, Peoples R China
[2] City Univ Hong Kong, Hong Kong, Peoples R China
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
基金
国家重点研发计划; 中国国家自然科学基金; 北京市自然科学基金;
关键词
low light enhancement; image decomposition; semantic segmentation; image restoration; Retinex model; DYNAMIC HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT;
D O I
10.1145/3394171.3413757
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinex model is widely adopted in various low-light image enhancement tasks. The basic idea of the Retinex theory is to decompose images into reflectance and illumination. The ill-posed decomposition is usually handled by hand-crafted constraints and priors. With the recently emerging deep-learning based approaches as tools, in this paper, we integrate the idea of Retinex decomposition and semantic information awareness. Based on the observation that various objects and backgrounds have different material, reflection and perspective attributes, regions of a single low-light image may require different adjustment and enhancement regarding contrast, illumination and noise. We propose an enhancement pipeline with three parts that effectively utilize the semantic layer information. Specifically, we extract the segmentation, reflectance as well as illumination layers, and concurrently enhance every separate region, i.e. sky, ground and objects for outdoor scenes. Extensive experiments on both synthetic data and real world images demonstrate the superiority of our method over current state-of-the-art low-light enhancement algorithms. Our code will be public available at: https://mm20-semanticreti.github.io/.
引用
收藏
页码:2317 / 2325
页数:9
相关论文
共 51 条
[1]   A dynamic histogram equalization for image contrast enhancement [J].
Abdullah-Al-Wadud, M. ;
Kabir, Md. Hasanul ;
Dewan, M. Ali Akber ;
Chae, Oksam .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2007, 53 (02) :593-600
[2]  
[Anonymous], 2017, 2017 IEEE VISUAL COM
[3]   A Histogram Modification Framework and Its Application for Image Contrast Enhancement [J].
Arici, Tarik ;
Dikbas, Salih ;
Altunbasak, Yucel .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (09) :1921-1935
[4]   Segmentation and Recognition Using Structure from Motion Point Clouds [J].
Brostow, Gabriel J. ;
Shotton, Jamie ;
Fauqueur, Julien ;
Cipolla, Roberto .
COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 :44-+
[5]  
Cai J., 2019, ABS190300763 ARXIV
[6]   Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images [J].
Cai, Jianrui ;
Gu, Shuhang ;
Zhang, Lei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) :2049-2062
[7]   Learning to See in the Dark [J].
Chen, Chen ;
Chen, Qifeng ;
Xu, Jia ;
Koltun, Vladlen .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3291-3300
[8]  
Cordts Marius, 2016, P IEEE INT C COMP VI
[9]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[10]   A weighted variational model for simultaneous reflectance and illumination estimation [J].
Fu, Xueyang ;
Zeng, Delu ;
Huang, Yue ;
Zhang, Xiao-Ping ;
Ding, Xinghao .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2782-2790