Reactive oxygen species stimulate mitochondrial allele segregation toward homoplasmy in human cells

被引:16
作者
Ling, Feng [1 ,3 ]
Niu, Rong [1 ,3 ]
Hatakeyama, Hideyuki [3 ,4 ]
Goto, Yu-ichi [3 ,4 ]
Shibata, Takehiko [2 ,3 ]
Yoshida, Minoru [1 ,3 ]
机构
[1] RIKEN, Chem Genet Lab, Wako, Saitama 3510198, Japan
[2] RIKEN, Cellular & Mol Biol Lab, Wako, Saitama 3510198, Japan
[3] Japan Agcy Med Res & Dev, Core Res Evolut Sci & Technol, Tokyo 1000004, Japan
[4] Natl Ctr Neurol & Psychiat, Dept Mental Retardat & Birth Defect Res, Tokyo 1878502, Japan
关键词
HYDROGEN-PEROXIDE; RAPID SEGREGATION; DNA MOLECULES; RECOMBINATION; REPLICATION; MUTATION; MTDNA; YEAST; BOTTLENECK; SEQUENCE;
D O I
10.1091/mbc.E15-10-0690
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondria that contain a mixture of mutant and wild-type mitochondrial (mt) DNA copies are heteroplasmic. In humans, homoplasmy is restored during early oogenesis and reprogramming of somatic cells, but the mechanism of mt-allele segregation remains unknown. In budding yeast, homoplasmy is restored by head-to-tail concatemer formation in mother cells by reactive oxygen species (ROS)-induced rolling-circle replication and selective transmission of concatemers to daughter cells, but this mechanism is not obvious in higher eukaryotes. Here, using heteroplasmic m.3243A > G primary fibroblast cells derived from MELAS patients treated with hydrogen peroxide (H2O2), we show that an optimal ROS level promotes mt-allele segregation toward wild-type and mutant mtDNA homoplasmy. Enhanced ROS level reduced the amount of intact mtDNA replication templates but increased linear tandem multimers linked by head-to-tail unit-sized mtDNA (mtDNA concatemers). ROS-triggered mt-allele segregation correlated with mtDNA-concatemer production and enabled transmission of multiple identical mt-genome copies as a single unit. Our results support a mechanism by which mt-allele segregation toward mt-homoplasmy is mediated by concatemers.
引用
收藏
页码:1684 / 1693
页数:10
相关论文
共 44 条
[1]  
Abdel-Salam Omar M. E., 2012, Journal of Basic and Clinical Physiology and Pharmacology, V23, P61, DOI 10.1515/jbcpp-2012-0004
[2]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[3]   RAPID SEGREGATION OF HETEROPLASMIC BOVINE MITOCHONDRIA [J].
ASHLEY, MV ;
LAIPIS, PJ ;
HAUSWIRTH, WW .
NUCLEIC ACIDS RESEARCH, 1989, 17 (18) :7325-7331
[4]  
Bendich AJ, 1996, J MOL BIOL, V255, P564, DOI 10.1006/jmbi.1996.0048
[5]   Membrane transport of hydrogen peroxide [J].
Bienert, Gerd P. ;
Schjoerring, Jan K. ;
Jahn, Thomas P. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (08) :994-1003
[6]  
BIRKY CW, 1978, MOL GEN GENET, V158, P251, DOI 10.1007/BF00267196
[7]   TRANSMISSION GENETICS OF MITOCHONDRIA AND CHLOROPLASTS [J].
BIRKY, CW .
ANNUAL REVIEW OF GENETICS, 1978, 12 :471-512
[8]   THE LOCALIZATION OF REPLICATION ORIGINS ON ARS PLASMIDS IN SACCHAROMYCES-CEREVISIAE [J].
BREWER, BJ ;
FANGMAN, WL .
CELL, 1987, 51 (03) :463-471
[9]   The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells [J].
Cao, Liqin ;
Shitara, Hiroshi ;
Horii, Takuro ;
Nagao, Yasumitsu ;
Imai, Hiroshi ;
Abe, Kuniya ;
Hara, Takahiko ;
Hayashi, Jun-Ichi ;
Yonekawa, Hiromichi .
NATURE GENETICS, 2007, 39 (03) :386-390
[10]   Mechanism of Homologous Recombination and Implications for Aging-Related Deletions in Mitochondrial DNA [J].
Chen, Xin Jie .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2013, 77 (03) :476-496