An iterative Kalman smoother/least-squares algorithm for the identification of delta-ARX models

被引:3
作者
Chadwick, M. A. [1 ]
Anderson, S. R. [2 ]
Kadirkamanathan, V. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Univ Sheffield, Dept Psychol, Sheffield S10 2TP, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
ARX model; state estimation; smoothing; delta operator; state-space models; SYSTEM-IDENTIFICATION; PARAMETER-ESTIMATION; LINEAR-SYSTEMS; VARIABLES;
D O I
10.1080/00207720903428872
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Additive measurement noise on the output signal is a significant problem in the -domain and disrupts parameter estimation of auto-regressive exogenous (ARX) models. This article deals with the identification of -domain linear time-invariant models of ARX structure (i.e. driven by known input signals and additive process noise) by using an iterative identification scheme, where the output is also corrupted by additive measurement noise. The identification proceeds by mapping the ARX model into a canonical state-space framework, where the states are the measurement noise-free values of the underlying variables. A consequence of this mapping is that the original parameter estimation task becomes one of both a state and parameter estimation problem. The algorithm steps between state estimation using a Kalman smoother and parameter estimation using least squares. This approach is advantageous as it avoids directly differencing the noise-corrupted 'raw' signals for use in the estimation phase and uses different techniques to the common parametric low-pass filters in the literature. Results of the algorithm applied to a simulation test problem as well as a real-world problem are given, and show that the algorithm converges quite rapidly and with accurate results.
引用
收藏
页码:839 / 851
页数:13
相关论文
共 34 条
[1]   Modelling and identification of non-linear deterministic systems in the delta-domain [J].
Anderson, S. R. ;
Kadirkamanathan, V. .
AUTOMATICA, 2007, 43 (11) :1859-1868
[2]   Linear and non-linear system identification using separable least-squares [J].
Bruls, J ;
Chou, CT ;
Haverkamp, BRJ ;
Verhaegen, M .
EUROPEAN JOURNAL OF CONTROL, 1999, 5 (01) :116-128
[3]   System identification from noisy measurements by using instrumental variables and subspace fitting [J].
Cedervall, M ;
Stoica, P .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1996, 15 (02) :275-290
[4]   A delta operator approach to discrete-time H∞ control [J].
Collins, EG ;
Song, TL .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (04) :315-320
[5]   Estimation of continuous-time AR process parameters from discrete-time data [J].
Fan, H ;
Söderstrom, T ;
Mossberg, M ;
Carlsson, B ;
Zou, YJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) :1232-1244
[6]   Continuous-time AR process parameter estimation in presence of additive white noise [J].
Fan, HH ;
Söderström, T ;
Zou, Y .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) :3392-3398
[7]   High speed adaptive signal progressing using the delta operator [J].
Fan, HH ;
De, P .
DIGITAL SIGNAL PROCESSING, 2001, 11 (01) :3-34
[8]   ACCURATE DERIVATIVE ESTIMATION FROM NOISY DATA - A STATE-SPACE APPROACH [J].
FIORETTI, S ;
JETTO, L .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (01) :33-53
[9]   Least-squares estimation of input/output models for distributed linear systems in the presence of noise [J].
Gibson, JS ;
Lee, GH ;
Wu, CF .
AUTOMATICA, 2000, 36 (10) :1427-1442
[10]   Robust maximum-likelihood estimation of multivariable dynamic systems [J].
Gibson, S ;
Ninness, B .
AUTOMATICA, 2005, 41 (10) :1667-1682