Lower bound for the perimeter density at singular points of a minimizing cluster in Double-struck capital RN☆

被引:1
|
作者
Hirsch, Jonas [1 ]
Marini, Michele [2 ]
机构
[1] Univ Leipzig, Math Inst, Augustus Pl 10, D-04109 Leipzig, Germany
[2] Scuola Int Super Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
关键词
Isoperimetric problems; partitioning problems; minimal surfaces; DOUBLE BUBBLE CONJECTURE; SOAP-BUBBLE; PROOF;
D O I
10.1051/cocv/2019005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the blow-ups of the singular points in the boundary of a minimizing cluster lying in the interface of more than two chambers. We establish a sharp lower bound for the perimeter density at those points and we prove that this bound is rigid, namely having the lowest possible density completely characterizes the blow-up.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Singular quasilinear convective elliptic systems in Double-struck capital RN
    Guarnotta, Umberto
    Marano, Salvatore Angelo
    Moussaoui, Abdelkrim
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 741 - 756
  • [2] Spectrality of homogeneous Moran measures on Double-struck capital Rn
    Fu, Yan-Song
    Tang, Min-Wei
    FORUM MATHEMATICUM, 2023, 35 (01) : 201 - 219
  • [3] Linear Interpolation on a Euclidean Ball in Double-struck capital Rn
    Nevskii, M. V.
    Ukhalov, A. Yu.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2020, 54 (07) : 601 - 614
  • [4] Multiplicity of solutions for fractional Schrodinger systems in Double-struck capital RN
    Ambrosio, Vincenzo
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (05) : 856 - 885
  • [5] On product affine hyperspheres in Double-struck capital Rn+1
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (10) : 2055 - 2078
  • [6] Supercritical problems with concave and convex nonlinearities in Double-struck capital RN
    Marcos do, Joao O.
    Mishra, Pawan Kumar
    Moameni, Abbas
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
  • [7] Gibbs states and Gibbsian specifications on the space Double-struck capital RN
    Lopes, Artur O.
    Vargas, Victor
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (02): : 216 - 241
  • [8] Nonexistence of solutions for quasilinear Schrodinger equation in Double-struck capital RN
    Chen, Lijuan
    Chen, Caisheng
    Yang, Hongwei
    Xiu, Zonghu
    APPLICABLE ANALYSIS, 2022, 101 (09) : 3479 - 3496
  • [9] Lower Bounds for the Wiener Norm in DOUBLE-STRUCK CAPITAL Zpd
    Gabdullin, M. R.
    MATHEMATICAL NOTES, 2020, 107 (3-4) : 574 - 588
  • [10] Some notes on directional curvature of a convex body in Double-struck capital Rn
    Pereira, F. F.
    OPTIMIZATION, 2022, 71 (11) : 3313 - 3325