Co-processing raw bio-oil and gasoil in an FCC Unit

被引:148
|
作者
Pinho, Andrea de Rezende [1 ]
de Almeida, Marlon B. B. [1 ]
Mendes, Fabio Leal [1 ]
Ximenes, Vitor Loureiro [1 ]
Casavechia, Luiz Carlos [2 ]
机构
[1] Petrobras SA, Ctr Pesquisas & Desenvolvimento Leopoldo A Miguez, Rio De Janeiro, RJ, Brazil
[2] PETROBRAS SIX, Sao Mateus Do Sul, Brazil
关键词
Refining; Co-processing; Fluid catalytic cracking; Biofuels; Bio-oil; FAST PYROLYSIS; HZSM-5; ZEOLITE; BIOMASS; HYDROCARBONS; CONVERSION; COMPONENTS; CATALYST; BIOFUELS; GASOLINE;
D O I
10.1016/j.fuproc.2014.11.008
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Bio-oil is a complex blend of oxygenated compounds, such as acetic acid, hydroxyacetone and phenols, and is produced from the fast pyrolysis of raw biomass. A raw bio-oil produced from pine woodchips was co-processed with standard gasoil and tested in a 150 kg/h fluid catalytic cracking (FCC) demonstration-scale unit. The bio-oil was cracked into valuable products, such as gasoline and LCO, with similar product yields obtained from the base FCC feed when up to 10% bio-oil was used. However, some deterioration was observed when 20% bio-oil was added. C-14 isotopic analyses were performed to determine the renewable carbon content in the FCC liquid products. When 20% bio-oil was co-processed, the renewable carbon content in the gasoline cuts varied between 3% and 5%. For 10% bio-oil in the feed, 2% renewable carbon was obtained in the total liquid product. Large amounts of phenolic compounds were detected in the naphtha produced by the FCC. The FCC carbon efficiency, which is defined as the amount of carbon in bio-oil converted to carbon in the total liquid products, was approximately 30%, well above the values found in the literature for FCC bio-oil upgrading (15%-.20%) when using laboratory scale units. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [1] Coke chemistry under vacuum gasoil/bio-oil FCC co-processing conditions
    Gueudre, Laurent
    Thegarid, Nicolas
    Burel, Laurence
    Jouguet, Bernadette
    Meunier, Frederic
    Schuurman, Yves
    Mirodatos, Claude
    CATALYSIS TODAY, 2015, 257 : 200 - 212
  • [2] Co-processing of Dry Bio-oil, Catalytic Pyrolysis Oil, and Hydrotreated Bio-oil in a Micro Activity Test Unit
    Lindfors, Christian
    Paasikallio, Ville
    Kuoppala, Eeva
    Reinikainen, Matti
    Oasmaa, Anja
    Solantausta, Yrjo
    ENERGY & FUELS, 2015, 29 (06) : 3707 - 3714
  • [3] Feedstock and catalyst impact on bio-oil production and FCC Co-processing to fuels
    Magrini, K.
    Olstad, J.
    Peterson, B.
    Jackson, R.
    Parent, Y.
    Mukarakate, C.
    Iisa, K.
    Christensen, E.
    Seiser, R.
    BIOMASS & BIOENERGY, 2022, 163
  • [4] Bio-oil co-processing can substantially contribute to renewable fuel production potential and meet air quality standards
    Bhatt, Arpit H.
    Zhang, Yimin
    Heath, Garvin
    APPLIED ENERGY, 2020, 268
  • [5] Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions
    Ibarra, Alvaro
    Veloso, Antonio
    Bilbao, Javier
    Arandes, Jose Ma
    Castano, Pedro
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 182 : 336 - 346
  • [6] Design and optimization of bio-oil co-processing with vacuum gas oil in a refinery
    Wu, Le
    Wang, Yuqi
    Zheng, Lan
    Shi, Meirong
    Li, Jingying
    ENERGY CONVERSION AND MANAGEMENT, 2019, 195 : 620 - 629
  • [7] Upgrading of bio-oil and subsequent co-processing under FCC conditions for fuel production
    Thuan Minh Huynh
    Armbruster, Udo
    Atia, Hanan
    Bentrup, Ursula
    Binh Minh Quoc Phan
    Eckelt, Reinhard
    Luong Huu Nguyen
    Duc Anh Nguyen
    Martin, Andreas
    REACTION CHEMISTRY & ENGINEERING, 2016, 1 (02): : 239 - 251
  • [8] A techno-economic evaluation of bio-oil co-processing within a petroleum refinery
    Ali, Asmaa A. M.
    Mustafa, Mustafa A.
    Yassin, Kamal E.
    BIOFUELS-UK, 2021, 12 (06): : 645 - 653
  • [9] Co-processing bio-oil in the refinery for drop-in biofuels via fluid catalytic cracking
    Stefanidis, Stylianos D.
    Kalogiannis, Konstantinos G.
    Lappas, Angelos A.
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2018, 7 (03)
  • [10] Co-processing the High-boiling Fraction of Bio-oil with Paraffin Oil
    Wan, L.
    Zhang, S. -P.
    Li, Q. -Y.
    Xu, Q. -L.
    Yan, Y. -J.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2013, 35 (08) : 717 - 724