Reconstruction from the Fourier transform on the ball via prolate spheroidal wave functions

被引:7
|
作者
Isaev, Mikhail [1 ]
Novikov, Roman G. [2 ,3 ]
机构
[1] Monash Univ, Sch Math, Clayton, Vic, Australia
[2] Inst Polytech Paris, Ecole Polytech, CMAP, CNRS, Palaiseau, France
[3] RAS, IEPT, Moscow, Russia
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 163卷
基金
澳大利亚研究理事会;
关键词
Ill-posed inverse problems; Band-limited Fourier transform; Prolate spheroidal wave functions; Radon transform; H?lder-logarithmic stability; EIGENVALUES; BOUNDS;
D O I
10.1016/j.matpur.2022.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give new formulas for finding a compactly supported function v on Rd, d > 1, from its Fourier transform Fv given within the ball Br. For the one-dimensional case, these formulas are based on the theory of prolate spheroidal wave functions (PSWF's). In multidimensions, well-known results of the Radon transform theory reduce the problem to the one-dimensional case. Related results on stability and convergence rates are also given.
引用
收藏
页码:318 / 333
页数:16
相关论文
共 50 条
  • [41] Frequency Domain Multi-Carrier Modulation Based on Prolate Spheroidal Wave Functions
    Wang, Hongxing
    Lu, Faping
    Liu, Chuanhui
    Liu, Xiao
    Kang, Jiafang
    IEEE ACCESS, 2020, 8 (08): : 99665 - 99680
  • [42] Generalized Prolate Spheroidal Wave Functions: Spectral Analysis and Approximation of Almost Band-Limited Functions
    Abderrazek Karoui
    Ahmed Souabni
    Journal of Fourier Analysis and Applications, 2016, 22 : 383 - 412
  • [43] Extreme value prediction of nonlinear ship loads by FORM using Prolate Spheroidal Wave Functions
    Takami, Tomoki
    Iijima, Kazuhiro
    Jensen, Jorgen Juncher
    MARINE STRUCTURES, 2020, 72
  • [44] Estimation of autocorrelation function and spectrum density of wave-induced responses using prolate spheroidal wave functions
    Tomoki Takami
    Ulrik Dam Nielsen
    Jørgen Juncher Jensen
    Journal of Marine Science and Technology, 2021, 26 : 772 - 791
  • [45] Optimal Spectral Schemes Based on Generalized Prolate Spheroidal Wave Functions of Order-1
    Zhang, Jing
    Wang, Li-Lian
    Li, Huiyuan
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 451 - 477
  • [46] Estimation of autocorrelation function and spectrum density of wave-induced responses using prolate spheroidal wave functions
    Takami, Tomoki
    Nielsen, Ulrik Dam
    Jensen, Jorgen Juncher
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2021, 26 (03) : 772 - 791
  • [47] Pseudospectral method based on prolate spheroidal wave functions for frequency-domain electromagnetic simulations
    Kovvali, N
    Lin, WB
    Carin, L
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (12) : 3990 - 4000
  • [48] Improved Pseudospectral Mode Solver by Prolate Spheroidal Wave Functions for Optical Waveguides With Step-Index
    Huang, Chia-Chien
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (5-8) : 597 - 605
  • [49] Asymptotic behaviors and numerical computations of the eigenfunctions and eigenvalues associated with the classical and circular prolate spheroidal wave functions
    Karoui, Abderrazek
    Mehrzi, Issam
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) : 10871 - 10888
  • [50] Explicit and Progressive Solution Method for Wigner-Ville Distribution of Prolate Spheroidal Wave Functions Signal
    Wang Hongxing
    Zhao Leyuan
    Lu Faping
    Liu Chuanhui
    Kang Jiafang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (10) : 3574 - 3582