Reconstruction from the Fourier transform on the ball via prolate spheroidal wave functions

被引:7
|
作者
Isaev, Mikhail [1 ]
Novikov, Roman G. [2 ,3 ]
机构
[1] Monash Univ, Sch Math, Clayton, Vic, Australia
[2] Inst Polytech Paris, Ecole Polytech, CMAP, CNRS, Palaiseau, France
[3] RAS, IEPT, Moscow, Russia
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 163卷
基金
澳大利亚研究理事会;
关键词
Ill-posed inverse problems; Band-limited Fourier transform; Prolate spheroidal wave functions; Radon transform; H?lder-logarithmic stability; EIGENVALUES; BOUNDS;
D O I
10.1016/j.matpur.2022.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give new formulas for finding a compactly supported function v on Rd, d > 1, from its Fourier transform Fv given within the ball Br. For the one-dimensional case, these formulas are based on the theory of prolate spheroidal wave functions (PSWF's). In multidimensions, well-known results of the Radon transform theory reduce the problem to the one-dimensional case. Related results on stability and convergence rates are also given.
引用
收藏
页码:318 / 333
页数:16
相关论文
共 50 条
  • [1] Numerical reconstruction from the Fourier transform on the ball using prolate spheroidal wave functions
    Isaev, Mikhail
    Novikov, Roman G.
    Sabinin, Grigory, V
    INVERSE PROBLEMS, 2022, 38 (10)
  • [2] Prolate spheroidal wave functions associated with the canonical Fourier-Bessel transform and uncertainty principles
    Sahbani, Jihed
    Guettiti, Takoua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15506 - 15525
  • [3] Evaluation of the Prolate Spheroidal Wavefunctions via a Discrete-Time Fourier Transform Based Approach
    Baddour, Natalie
    Sun, Zuwen
    SYMMETRY-BASEL, 2023, 15 (12):
  • [4] Approximations in Sobolev spaces by prolate spheroidal wave functions
    Bonami, Aline
    Karoui, Abderrazek
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 42 (03) : 361 - 377
  • [5] Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
    Karnik, Santhosh
    Romberg, Justin
    Davenport, Mark A.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 97 - 128
  • [6] Sound Field Reconstruction Using Prolate Spheroidal Wave Functions and Sparse Regularization
    Zhang, Xuxin
    Lou, Jingjun
    Zhu, Shijian
    Lu, Jinfang
    Li, Ronghua
    SENSORS, 2023, 23 (19)
  • [7] Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis
    Kou, K.
    Morais, J.
    Zhang, Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (09) : 1028 - 1041
  • [8] On the evaluation of prolate spheroidal wave functions and associated quadrature rules
    Osipov, Andrei
    Rokhlin, Vladimir
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 36 (01) : 108 - 142
  • [9] Uniform Approximation and Explicit Estimates for the Prolate Spheroidal Wave Functions
    Bonami, Aline
    Karoui, Abderrazek
    CONSTRUCTIVE APPROXIMATION, 2016, 43 (01) : 15 - 45
  • [10] Non-asymptotic bounds for discrete prolate spheroidal wave functions analogous with prolate spheroidal wave function bounds
    Said, Karim A.
    Beex, A. A.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 63 : 20 - 47