A joint quantile regression model for multiple longitudinal outcomes

被引:13
作者
Kulkarni, Hemant [1 ]
Biswas, Jayabrata [2 ]
Das, Kiranmoy [2 ]
机构
[1] Indian Stat Inst, Human Genet Unit, Kolkata, India
[2] Indian Stat Inst, Interdisciplinary Stat Res Unit, Kolkata, India
关键词
Asymmetric Laplace Distribution; EM algorithm; Longitudinal data; MCMC; Quantile regression; SEMIPARAMETRIC BAYESIAN-APPROACH; LIKELIHOOD;
D O I
10.1007/s10182-018-00339-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Complexity of longitudinal data lies in the inherent dependence among measurements from same subject over different time points. For multiple longitudinal responses, the problem is challenging due to inter-trait and intra-trait dependence. While linear mixed models are popularly used for analysing such data, appropriate inference on the shape of the population cannot be drawn for non-normal data sets. We propose a linear mixed model for joint quantile regression of multiple longitudinal responses. We consider an asymmetric Laplace distribution for quantile regression and estimate model parameters by Monte Carlo EM algorithm. Nonparametric bootstrap resampling method is used for estimating confidence intervals of parameter estimates. Through extensive simulation studies, we investigate the operating characteristics of our proposed model and compare the performance to other traditional quantile regression models. We apply proposed model for analysing data from nutrition education programme on hypercholesterolemic children of the USA.
引用
收藏
页码:453 / 473
页数:21
相关论文
共 35 条
[1]  
[Anonymous], ARXIV161208114
[2]   Linear mixed models for skew-normal/independent bivariate responses with an application to periodontal disease [J].
Bandyopadhyay, Dipankar ;
Lachos, Victor H. ;
Abanto-Valle, Carlos A. ;
Ghosh, Pulak .
STATISTICS IN MEDICINE, 2010, 29 (25) :2643-2655
[3]   Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm [J].
Booth, JG ;
Hobert, JP .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :265-285
[4]  
Cai YZ, 2010, STAT SINICA, V20, P481
[5]   On multivariate quantile regression [J].
Chakraborty, B .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 110 (1-2) :109-132
[6]  
Chaudhuri P, 1996, J AM STAT ASSOC, V91, P862
[7]   SMOOTHING REFERENCE CENTILE CURVES - THE LMS METHOD AND PENALIZED LIKELIHOOD [J].
COLE, TJ ;
GREEN, PJ .
STATISTICS IN MEDICINE, 1992, 11 (10) :1305-1319
[8]   A Semiparametric Bayesian Approach for Analyzing Longitudinal Data from Multiple Related Groups [J].
Das, Kiranmoy ;
Afriyie, Prince ;
Spirko, Lauren .
INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2015, 11 (02) :273-284
[9]   A Semiparametric Approach to Simultaneous Covariance Estimation for Bivariate Sparse Longitudinal Data [J].
Das, Kiranmoy ;
Daniels, Michael J. .
BIOMETRICS, 2014, 70 (01) :33-43
[10]   A Bayesian semiparametric model for bivariate sparse longitudinal data [J].
Das, Kiranmoy ;
Li, Runze ;
Sengupta, Subhajit ;
Wu, Rongling .
STATISTICS IN MEDICINE, 2013, 32 (22) :3899-3910