The limit of vanishing viscosity for doubly nonlinear parabolic equations

被引:0
作者
Matas, Ales [1 ]
Merker, Jochen [2 ]
机构
[1] Univ West Bohemia, Dept Math, CZ-30614 Plzen, Czech Republic
[2] Univ Rostock, Inst Math, D-18051 Rostock, Germany
关键词
vanishing viscosity; doubly nonlinear evolution equations; conservation law; quasilinear; degenerate; CONSERVATION-LAWS; UNIQUENESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that solutions of the doubly nonlinear parabolic equation partial derivative b(u)/partial derivative t - epsilon div(a(del u)) + div (f(u)) = g converge in the limit epsilon SE arrow 0 of vanishing viscosity to an entropy solution of the doubly nonlinear hyperbolic equation partial derivative b(u)/partial derivative t + div (f(u)) = g. The difficulty here lies in the fact that the functions a and b specifying the diffusion are nonlinear.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 19 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   Scalar conservation laws with general boundary condition and continuous flux function [J].
Ammar, Kaouther ;
Wittbold, Petra ;
Carrillo, Jose .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) :111-139
[3]   A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux [J].
Andreianov, Boris ;
Hvistendahl, Kenneth Karlsen ;
Risebro, Nils Henrik .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (01) :27-86
[4]  
[Anonymous], 1996, APPL MATH MATH COMPU
[5]   Conservation laws with discontinuous flux functions and boundary condition [J].
Carrillo, J .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (02) :283-301
[6]  
Correia J. M., 1999, NONLINEAR EVOLUTION, P21
[7]  
Dafermos C. M., 2010, FUNDAMENTAL PRINCIPL, V325
[8]  
Grange O., 1972, J. Funct. Anal, V11, P77, DOI [10.1016/0022-1236(72)90080-8, DOI 10.1016/0022-1236(72)90080-8]
[9]   Uniqueness of the bounded solution to a strongly degenerate parabolic problem [J].
Liu, Qiang ;
Wang, Chunpeng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (11) :2993-3002
[10]   A pseudo-monotonicity adapted to doubly nonlinear elliptic-parabolic equations [J].
Maitre, E ;
Witomski, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (02) :223-250