FDA-regulated AI Algorithms: Trends, Strengths, and Gaps of Validation Studies

被引:64
作者
Ebrahimian, Shadi [1 ,2 ]
Kalra, Mannudeep K. [1 ,2 ]
Agarwal, Sheela [3 ,4 ]
Bizzo, Bernardo C. [1 ,2 ,5 ]
Elkholy, Mona [4 ]
Wald, Christoph [6 ,7 ,8 ]
Allen, Bibb [9 ]
Dreyer, Keith J. [1 ,2 ,5 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, 25 New Chardon St, Boston, MA 02114 USA
[2] Harvard Med Sch, 25 New Chardon St, Boston, MA 02114 USA
[3] Lenox Hill Radiol, New York, NY USA
[4] ACR Data Sci Inst, Reston, VA USA
[5] MGH & BWH Ctr Clin Data Sci, Boston, MA 02114 USA
[6] Lahey Hosp, Dept Radiol, Burlington, MA USA
[7] Med Ctr, Burlington, MA USA
[8] Tufts Univ, Sch Med, Boston, MA 02111 USA
[9] Grandview Med Ctr, Dept Radiol, Birmingham, AL USA
关键词
Artificial intelligence; Machine learning; Radiology; Validation studies;
D O I
10.1016/j.acra.2021.09.002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: To assess key trends, strengths, and gaps in validation studies of the Food and Drug Administration (FDA)regulated imaging-based artificial intelligence/machine learning (AI/ML) algorithms. Materials and Methods: We audited publicly available details of regulated AI/ML algorithms in imaging from 2008 until April 2021. We reviewed 127 regulated software (118 AI/ML) to classify information related to their parent company, subspecialty, body area and specific anatomy type, imaging modality, date of FDA clearance, indications for use, target pathology (such as trauma) and findings (such as fracture), technique (CAD triage, CAD detection and/or characterization, CAD acquisition or improvement, and image processing/quantification), product performance, presence, type, strength and availability of clinical validation data. Pertaining to validation data, where available, we recorded the number of patients or studies included, sensitivity, specificity, accuracy, and/or receiver operating characteristic area under the curve, along with information on ground-truthing of use-cases. Data were analyzed with pivot tables and charts for descriptive statistics and trends. Results: We noted an increasing number of FDA-regulated AI/ML from 2008 to 2021. Seventeen (17/118) regulated AI/ML algorithms posted no validation claims or data. Just 9/118 reviewed AI/ML algorithms had a validation dataset sizes of over 1000 patients. The most common type of AI/ML included image processing/quantification (IPQ; n = 59/118), and triage (CADt; n = 27/118). Brain, breast, and lungs dominated the targeted body regions of interest. Conclusion: Insufficient public information on validation datasets in several FDA-regulated AI/ML algorithms makes it difficult to justify clinical applications since their generalizability and presence of bias cannot be inferred.
引用
收藏
页码:559 / 566
页数:8
相关论文
共 18 条
  • [11] Medical Futurist, US
  • [12] Initial chest radiographs and artificial intelligence (AI) predict clinical outcomes in COVID-19 patients: analysis of 697 Italian patients
    Mushtaq, Junaid
    Pennella, Renato
    Lavalle, Salvatore
    Colarieti, Anna
    Steidler, Stephanie
    Martinenghi, Carlo M. A.
    Palumbo, Diego
    Esposito, Antonio
    Rovere-Querini, Patrizia
    Tresoldi, Moreno
    Landoni, Giovanni
    Ciceri, Fabio
    Zangrillo, Alberto
    De Cobelli, Francesco
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (03) : 1770 - 1779
  • [13] Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans
    Roberts, Michael
    Driggs, Derek
    Thorpe, Matthew
    Gilbey, Julian
    Yeung, Michael
    Ursprung, Stephan
    Aviles-Rivero, Angelica I.
    Etmann, Christian
    McCague, Cathal
    Beer, Lucian
    Weir-McCall, Jonathan R.
    Teng, Zhongzhao
    Gkrania-Klotsas, Effrossyni
    Rudd, James H. F.
    Sala, Evis
    Schonlieb, Carola-Bibiane
    [J]. NATURE MACHINE INTELLIGENCE, 2021, 3 (03) : 199 - 217
  • [14] Artificial Intelligence-Based Classification of Chest X-Ray Images into COVID-19 and Other Infectious Diseases
    Sharma, Arun
    Rani, Sheeba
    Gupta, Dinesh
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2020, 2020
  • [15] Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT
    Uthoff, Johanna
    Stephens, Matthew J.
    Newell, John D.
    Hoffman, Eric A.
    Larson, Jared
    Koehn, Nicholas
    De Stefano, Frank A.
    Lusk, Chrissy M.
    Wenzlaff, Angela S.
    Watza, Donovan
    Neslund-Dudas, Christine
    Carr, Laurie L.
    Lynch, David A.
    Schwartz, Ann G.
    Sieren, Jessica C.
    [J]. MEDICAL PHYSICS, 2019, 46 (07) : 3207 - 3216
  • [16] Artificial intelligence in radiology: 100 commercially available products and their scientific evidence
    van Leeuwen, Kicky G.
    Schalekamp, Steven
    Rutten, Matthieu J. C. M.
    van Ginneken, Bram
    de Rooij, Maarten
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (06) : 3797 - 3804
  • [17] How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals
    Wu, Eric
    Wu, Kevin
    Daneshjou, Roxana
    Ouyang, David
    Ho, Daniel E.
    Zou, James
    [J]. NATURE MEDICINE, 2021, 27 (04) : 582 - 584
  • [18] US