FDA-regulated AI Algorithms: Trends, Strengths, and Gaps of Validation Studies

被引:64
作者
Ebrahimian, Shadi [1 ,2 ]
Kalra, Mannudeep K. [1 ,2 ]
Agarwal, Sheela [3 ,4 ]
Bizzo, Bernardo C. [1 ,2 ,5 ]
Elkholy, Mona [4 ]
Wald, Christoph [6 ,7 ,8 ]
Allen, Bibb [9 ]
Dreyer, Keith J. [1 ,2 ,5 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, 25 New Chardon St, Boston, MA 02114 USA
[2] Harvard Med Sch, 25 New Chardon St, Boston, MA 02114 USA
[3] Lenox Hill Radiol, New York, NY USA
[4] ACR Data Sci Inst, Reston, VA USA
[5] MGH & BWH Ctr Clin Data Sci, Boston, MA 02114 USA
[6] Lahey Hosp, Dept Radiol, Burlington, MA USA
[7] Med Ctr, Burlington, MA USA
[8] Tufts Univ, Sch Med, Boston, MA 02111 USA
[9] Grandview Med Ctr, Dept Radiol, Birmingham, AL USA
关键词
Artificial intelligence; Machine learning; Radiology; Validation studies;
D O I
10.1016/j.acra.2021.09.002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: To assess key trends, strengths, and gaps in validation studies of the Food and Drug Administration (FDA)regulated imaging-based artificial intelligence/machine learning (AI/ML) algorithms. Materials and Methods: We audited publicly available details of regulated AI/ML algorithms in imaging from 2008 until April 2021. We reviewed 127 regulated software (118 AI/ML) to classify information related to their parent company, subspecialty, body area and specific anatomy type, imaging modality, date of FDA clearance, indications for use, target pathology (such as trauma) and findings (such as fracture), technique (CAD triage, CAD detection and/or characterization, CAD acquisition or improvement, and image processing/quantification), product performance, presence, type, strength and availability of clinical validation data. Pertaining to validation data, where available, we recorded the number of patients or studies included, sensitivity, specificity, accuracy, and/or receiver operating characteristic area under the curve, along with information on ground-truthing of use-cases. Data were analyzed with pivot tables and charts for descriptive statistics and trends. Results: We noted an increasing number of FDA-regulated AI/ML from 2008 to 2021. Seventeen (17/118) regulated AI/ML algorithms posted no validation claims or data. Just 9/118 reviewed AI/ML algorithms had a validation dataset sizes of over 1000 patients. The most common type of AI/ML included image processing/quantification (IPQ; n = 59/118), and triage (CADt; n = 27/118). Brain, breast, and lungs dominated the targeted body regions of interest. Conclusion: Insufficient public information on validation datasets in several FDA-regulated AI/ML algorithms makes it difficult to justify clinical applications since their generalizability and presence of bias cannot be inferred.
引用
收藏
页码:559 / 566
页数:8
相关论文
共 18 条
  • [1] [Anonymous], FDA Cleared AI Algorithms
  • [2] Artificial intelligence to codify lung CT in Covid-19 patients
    Belfiore, Maria Paola
    Urraro, Fabrizio
    Grassi, Roberta
    Giacobbe, Giuliana
    Patelli, Gianluigi
    Cappabianca, Salvatore
    Reginelli, Alfonso
    [J]. RADIOLOGIA MEDICA, 2020, 125 (05): : 500 - 504
  • [3] The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database
    Benjamens, Stan
    Dhunnoo, Pranavsingh
    Mesko, Bertalan
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [4] A DEEP LEARNING MODEL TO AID IN DETECTION OF PNEUMOTHORAX VIA CXR: A RETROSPECTIVE COHORT ANALYSIS OF THE NIH-BASED CXR DATASET
    Chacon, Andres
    Plasencia, Juan Teran
    Avila, Gustavo
    Aboubakr, Mostafa
    Briski, Robert
    Mendez, Ashley
    Sadovnikov, Irina
    Donath, Elie
    Chakravarthula, Preeti Nallan
    Cain, Natalie
    Houser, Margaret
    Kong, Min
    Kilaru, Deepti
    [J]. CHEST, 2019, 156 (04) : 917A - 918A
  • [5] DeGrave AJ, 2020, medRxiv, DOI [10.1101/2020.09.13.20193565, 10.1101/2020.09.13.20193565, DOI 10.1101/2020.09.13.20193565]
  • [6] Dreyer KJ, JACR
  • [7] Predicting Pulmonary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD
    Gawlitza, Joshua
    Sturm, Timo
    Spohrer, Kai
    Henzler, Thomas
    Akin, Ibrahim
    Schonberg, Stefan
    Borggrefe, Martin
    Haubenreisser, Holger
    Trinkmann, Frederik
    [J]. DIAGNOSTICS, 2019, 9 (01):
  • [8] Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets
    Harmon, Stephanie A.
    Sanford, Thomas H.
    Xu, Sheng
    Turkbey, Evrim B.
    Roth, Holger
    Xu, Ziyue
    Yang, Dong
    Myronenko, Andriy
    Anderson, Victoria
    Amalou, Amel
    Blain, Maxime
    Kassin, Michael
    Long, Dilara
    Varble, Nicole
    Walker, Stephanie M.
    Bagci, Ulas
    Ierardi, Anna Maria
    Stellato, Elvira
    Plensich, Guido Giovanni
    Franceschelli, Giuseppe
    Girlando, Cristiano
    Irmici, Giovanni
    Labella, Dominic
    Hammoud, Dima
    Malayeri, Ashkan
    Jones, Elizabeth
    Summers, Ronald M.
    Choyke, Peter L.
    Xu, Daguang
    Flores, Mona
    Tamura, Kaku
    Obinata, Hirofumi
    Mori, Hitoshi
    Patella, Francesca
    Cariati, Maurizio
    Carrafiello, Gianpaolo
    An, Peng
    Wood, Bradford J.
    Turkbey, Baris
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution
    Ji, Yu
    Li, Hui
    Edwards, Alexandra V.
    Papaioannou, John
    Ma, Wenjuan
    Liu, Peifang
    Giger, Maryellen L.
    [J]. CANCER IMAGING, 2019, 19 (01)
  • [10] Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy
    Li, Lin
    Qin, Lixin
    Xu, Zeguo
    Yin, Youbing
    Wang, Xin
    Kong, Bin
    Bai, Junjie
    Lu, Yi
    Fang, Zhenghan
    Song, Qi
    Cao, Kunlin
    Liu, Daliang
    Wang, Guisheng
    Xu, Qizhong
    Fang, Xisheng
    Zhang, Shiqin
    Xia, Juan
    Xia, Jun
    [J]. RADIOLOGY, 2020, 296 (02) : E65 - +