DOA Estimation in Heteroscedastic Noise with sparse Bayesian Learning

被引:0
作者
Gerstoft, Peter [1 ]
Mecklenbraeuker, Christoph F. [2 ]
Nannuru, Santosh [3 ]
Leus, Geert [4 ]
机构
[1] UCSD, NoiseLab, La Jolla, CA 92093 USA
[2] TU Wien, Inst Telecommun, Vienna, Austria
[3] IIIT Hyderabad, SPCRC, Hyderabad, India
[4] Delft Univ Technol, Dept Elect Engn, Delft, Netherlands
来源
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL | 2020年 / 35卷 / 11期
关键词
Heteroscedastic noise; sparse reconstruction; LIKELIHOOD; MULTIPLE;
D O I
10.47037/2020.ACES.J.351188
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider direction of arrival (DOA) estimation from long-term observations in a noisy environment. In such an environment the noise source might evolve, causing the stationary models to fail. Therefore a heteroscedastic Gaussian noise model is introduced where the variance can vary across observations and sensors. The source amplitudes are assumed independent zero-mean complex Gaussian distributed with unknown variances (i.e., source powers), leading to stochastic maximum likelihood (ML) DOA estimation. The DOAs are estimated from multi-snapshot array data using sparse Bayesian learning (SBL) where the noise is estimated across both sensors and snapshots.
引用
收藏
页码:1439 / 1440
页数:2
相关论文
共 50 条
[31]   DOA estimation via sparse representation of the smoothed array covariance matrix [J].
Cai J. ;
Zong R. ;
Cai H. .
Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2016, 38 (01) :168-173
[32]   Covariance sparsity-aware DOA estimation for nonuniform noise [J].
He, Zhen-Qing ;
Shi, Zhi-Ping ;
Huang, Lei .
DIGITAL SIGNAL PROCESSING, 2014, 28 :75-81
[33]   SPARSE BAYESIAN LEARNING WITH UNCERTAIN SENSING MATRIX [J].
Nannuru, Santosh ;
GerstoJt, Peter ;
Gemba, Kay L. .
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, :3964-3968
[34]   Differentiating noisy radiocommunications signals: wavelet estimation of a derivative in the presence of heteroscedastic noise [J].
Baxter, PD ;
Upton, GJG .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 :753-767
[35]   DoA estimation based on sparse signal recovery utilizing weighted 1 norm [J].
Zhao J.-H. ;
Ma Z.-T. ;
Qu H. ;
Wang W.-H. ;
Li L.-L. .
Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2016, 39 (05) :33-36and66
[36]   Narrowband and Wideband Off-Grid Direction-of-Arrival Estimation via Sparse Bayesian Learning [J].
Das, Anup ;
Sejnowski, Terrence J. .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2018, 43 (01) :108-118
[37]   Direction of Arrival Estimation via Joint Sparse Bayesian Learning for Bi-Static Passive Radar [J].
Zhang, Xinyu ;
Huo, Kai ;
Liu, Yongxiang ;
Li, Xiang .
IEEE ACCESS, 2019, 7 :72979-72993
[38]   Bayesian Structure Learning in Sparse Gaussian Graphical Models [J].
Mohammadi, A. ;
Wit, E. C. .
BAYESIAN ANALYSIS, 2015, 10 (01) :109-138
[39]   Robust Ocean Acoustic Localization With Sparse Bayesian Learning [J].
Gemba, Kay L. ;
Nannuru, Santosh ;
Gerstoft, Peter .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2019, 13 (01) :49-60
[40]   Identification of Errors-in-Variable System With Heteroscedastic Noise and Partially Known Input Using Variational Bayesian [J].
Zhang, Jinxi ;
Guo, Fan ;
Hao, Kuangrong ;
Huang, Biao ;
Chen, Lei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (10) :10014-10023