Promotion of the long-term stability of reforming Ni catalysts by surface alloying

被引:213
作者
Nikolla, Eranda [1 ]
Schwank, Johannes [1 ]
Linic, Suljo [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
hydrocarbon reforming; SOFC; carbon poisoning; ni alloys; DFT; Sn/Ni; rational catalyst design;
D O I
10.1016/j.jcat.2007.04.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-induced catalyst deactivation is one of the main problems associated with the electrocatalytic and catalytic reforming of hydrocarbons over supported Ni catalysts. We have used DFT calculations to study various aspects of carbon chemistry on Ni surfaces. We demonstrate that the carbon tolerance of Ni can be improved by synthesizing Ni-containing surface alloys that, compared to monometallic Ni, preferentially oxidize C atoms rather than form C-C bonds and have a lower thermodynamic driving force, associated with the nucleation of carbon atoms on low-coordinated Ni sites. Using the molecular insights obtained in the DFT calculations, we have identified Sn/Ni surface alloy as a potential carbon-tolerant reforming catalyst. The predictions of the DFT calculations were supported by our reactor and catalyst characterization studies, which showed that Sn/Ni is much more resistant to carbon poisoning than monometallic Ni in the steam reforming of methane, propane, and isooctane at moderate steam-to-carbon ratios. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 48 条
[1]   Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations [J].
Abild-Pedersen, F ;
Norskov, JK ;
Rostrup-Nielsen, JR ;
Sehested, J ;
Helveg, S .
PHYSICAL REVIEW B, 2006, 73 (11)
[2]   Methane activation on Ni(111):: Effects of poisons and step defects [J].
Abild-Pedersen, F ;
Lytken, O ;
Engbæk, J ;
Nielsen, G ;
Chorkendorff, I ;
Norskov, JK .
SURFACE SCIENCE, 2005, 590 (2-3) :127-137
[3]   METHANE STEAM REFORMING KINETICS FOR SOLID OXIDE FUEL-CELLS [J].
ACHENBACH, E ;
RIENSCHE, E .
JOURNAL OF POWER SOURCES, 1994, 52 (02) :283-288
[5]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[6]   Steam reforming and graphite formation on Ni catalysts [J].
Bengaard, HS ;
Norskov, JK ;
Sehested, J ;
Clausen, BS ;
Nielsen, LP ;
Molenbroek, AM ;
Rostrup-Nielsen, JR .
JOURNAL OF CATALYSIS, 2002, 209 (02) :365-384
[7]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915
[8]   Synthesis, structure, and reactions of stable oxametallacycles from styrene oxide on Ag(111) [J].
Enever, M ;
Linic, S ;
Uffalussy, K ;
Vohs, JM ;
Barteau, MA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (06) :2227-2233
[9]   Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane [J].
Finnerty, CM ;
Coe, NJ ;
Cunningham, RH ;
Ormerod, RM .
CATALYSIS TODAY, 1998, 46 (2-3) :137-145
[10]   Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons [J].
Gorte, RJ ;
Vohs, JM .
JOURNAL OF CATALYSIS, 2003, 216 (1-2) :477-486