Centromeric Heterochromatin: The Primordial Segregation Machine

被引:58
作者
Bloom, Kerry S. [1 ]
机构
[1] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
来源
ANNUAL REVIEW OF GENETICS, VOL 48 | 2014年 / 48卷
关键词
centromere; heterochromatin; chromosome segregation; DNA mechanics; molecular springs; SISTER-CHROMATID COHESION; PRESSURE-INDUCED DEPOLYMERIZATION; SPINDLE-ASSEMBLY CHECKPOINT; BUDDING YEAST CHROMOSOMES; 2 MICRON PLASMID; SACCHAROMYCES-CEREVISIAE; FISSION-YEAST; CENP-A; MOLECULAR ARCHITECTURE; PERICENTRIC CHROMATIN;
D O I
10.1146/annurev-genet-120213-092033
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 mu m) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
引用
收藏
页码:457 / 484
页数:28
相关论文
共 176 条
[91]   Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells [J].
Liu, Song-Tao ;
Rattner, Jerome B. ;
Jablonski, Sandra A. ;
Yen, Tim J. .
JOURNAL OF CELL BIOLOGY, 2006, 175 (01) :41-53
[92]   Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis [J].
Losada, A ;
Hirano, M ;
Hirano, T .
GENES & DEVELOPMENT, 2002, 16 (23) :3004-3016
[93]   Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay [J].
Maddox, Paul S. ;
Portier, Nathan ;
Desai, Arshad ;
Oegema, Karen .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (41) :15097-15102
[94]   Assay of centromere function using a human artificial chromosome [J].
Masumoto, H ;
Ikeno, M ;
Nakano, M ;
Okazaki, T ;
Grimes, B ;
Cooke, H ;
Suzuki, N .
CHROMOSOMA, 1998, 107 (6-7) :406-416
[95]  
McClintock B, 1938, GENETICS, V23, P315
[96]  
MCCLINTOCK B, 1953, GENETICS, V38, P579
[97]   Biophysics of mitosis [J].
McIntosh, J. Richard ;
Molodtsov, Maxim I. ;
Ataullakhanov, Fazly I. .
QUARTERLY REVIEWS OF BIOPHYSICS, 2012, 45 (02) :147-207
[98]   The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences [J].
Megee, PC ;
Mistrot, C ;
Guacci, V ;
Koshland, D .
MOLECULAR CELL, 1999, 4 (03) :445-450
[99]   Mechanical Forces of Fission Yeast Growth [J].
Minc, Nicolas ;
Boudaoud, Arezki ;
Chang, Fred .
CURRENT BIOLOGY, 2009, 19 (13) :1096-1101
[100]   Structural Integrity of Centromeric Chromatin and Faithful Chromosome Segregation Requires Pat1 [J].
Mishra, Prashant K. ;
Ottmann, Alicia R. ;
Basrai, Munira A. .
GENETICS, 2013, 195 (02) :369-+