Centromeric Heterochromatin: The Primordial Segregation Machine

被引:58
作者
Bloom, Kerry S. [1 ]
机构
[1] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
来源
ANNUAL REVIEW OF GENETICS, VOL 48 | 2014年 / 48卷
关键词
centromere; heterochromatin; chromosome segregation; DNA mechanics; molecular springs; SISTER-CHROMATID COHESION; PRESSURE-INDUCED DEPOLYMERIZATION; SPINDLE-ASSEMBLY CHECKPOINT; BUDDING YEAST CHROMOSOMES; 2 MICRON PLASMID; SACCHAROMYCES-CEREVISIAE; FISSION-YEAST; CENP-A; MOLECULAR ARCHITECTURE; PERICENTRIC CHROMATIN;
D O I
10.1146/annurev-genet-120213-092033
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 mu m) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
引用
收藏
页码:457 / 484
页数:28
相关论文
共 176 条
[1]   Condensin and cohesin display different arm conformations with characteristic hinge angles [J].
Anderson, DE ;
Losada, A ;
Erickson, HP ;
Hirano, T .
JOURNAL OF CELL BIOLOGY, 2002, 156 (03) :419-424
[2]   Function and Assembly of DNA Looping, Clustering, and Microtubule Attachment Complexes within a Eukaryotic Kinetochore [J].
Anderson, Marybeth ;
Haase, Julian ;
Yeh, Elaine ;
Bloom, Kerry .
MOLECULAR BIOLOGY OF THE CELL, 2009, 20 (19) :4131-4139
[3]   ON INTERACTION BETWEEN 2 BODIES IMMERSED IN A SOLUTION OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF CHEMICAL PHYSICS, 1954, 22 (07) :1255-1256
[4]   Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae [J].
Bachellier-Bassi, Sophie ;
Gadal, Olivier ;
Bourout, Gaelle ;
Nehrbass, Ulf .
JOURNAL OF STRUCTURAL BIOLOGY, 2008, 162 (02) :248-259
[5]   Posttranslational modification of CENP-A influences the conformation of centromeric chromatin [J].
Bailey, Aaron O. ;
Panchenko, Tanya ;
Sathyan, Kizhakke M. ;
Petkowski, Janusz J. ;
Pai, Pei-Jing ;
Bai, Dina L. ;
Russell, David H. ;
Macara, Ian G. ;
Shabanowitz, Jeffrey ;
Hunt, Donald F. ;
Black, Ben E. ;
Foltz, Daniel R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (29) :11827-11832
[6]  
Baldwin M, 2009, METHODS MOL BIOL, V582, P119, DOI 10.1007/978-1-60761-340-4_10
[7]   Men and sin: What's the difference? [J].
Bardin, AJ ;
Amon, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (11) :815-826
[8]   Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function [J].
Bergmann, Jan H. ;
Jakubsche, Julia N. ;
Martins, Nuno M. ;
Kagansky, Alexander ;
Nakano, Megumi ;
Kimura, Hiroshi ;
Kelly, David A. ;
Turner, Bryan M. ;
Masumoto, Hiroshi ;
Larionov, Vladimir ;
Earnshaw, William C. .
JOURNAL OF CELL SCIENCE, 2012, 125 (02) :411-421
[9]   Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore [J].
Bergmann, Jan H. ;
Rodriguez, Mariluz Gomez ;
Martins, Nuno M. C. ;
Kimura, Hiroshi ;
Kelly, David A. ;
Masumoto, Hiroshi ;
Larionov, Vladimir ;
Jansen, Lars E. T. ;
Earnshaw, William C. .
EMBO JOURNAL, 2011, 30 (02) :328-340
[10]   The Composition, Functions, and Regulation of the Budding Yeast Kinetochore [J].
Biggins, Sue .
GENETICS, 2013, 194 (04) :817-846