Functional characterization of poplar WRKY75 in salt and osmotic tolerance

被引:46
作者
Zhao, Kai [1 ]
Zhang, Dawei [1 ]
Lv, Kaiwen [1 ]
Zhang, Xuemei [1 ]
Cheng, Zihan [1 ]
Li, Renhua [1 ]
Zhou, Boru [1 ]
Jiang, Tingbo [1 ]
机构
[1] Northeast Forestry Univ, State Key Lab Tree Genet & Breeding, 51 Hexing Rd, Harbin 150040, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Poplar; WRKY transcription factor; Abiotic stresses; TRANSCRIPTION FACTOR WRKY75; DROUGHT TOLERANCE; ABIOTIC STRESS; PROTEIN; SUPERFAMILY; ANNOTATION; EXPRESSION; PROLINE; GENES; ACID;
D O I
10.1016/j.plantsci.2019.110259
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The WRKY transcription factor family is one of the most important families in plants, playing a significant role in plant growth and development, as well as in stress responses. However, functional studies on the family in response to abiotic stresses are limited in poplar. In the present study, we cloned a WRKY transcription factor gene PagWRKY75, which was down-regulated during early stages of salt and osmotic stresses. The PagWRKY75 protein belongs to the WRKY IIc subfamily. It is located in the nucleus and can bind to the W box. We obtained transgenic poplar lines with PagWRKY75 overexpression or inhibited expression by RNA interference. Stress treatment experiments indicated that the transgenic poplar lines overexpressing PagWRKY75 were more sensitive to salt and osmotic stresses, compared to wild type. The transgenic lines with PagWRKY75 inhibition displayed opposite effects. Furthermore, our results showed that PagWRKY75 can reduce the ability of reactive oxygen species scavenging and the accumulation of proline under stresses, and positively regulate the water loss rate of leaves. These results indicate that the transcription factor PagWRKY75 can negatively regulate salt and osmotic tolerance by modulating various physiological processes.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis [J].
Babitha, K. C. ;
Ramu, S. V. ;
Pruthvi, V. ;
Mahesh, Patil ;
Nataraja, Karaba N. ;
Udayakumar, M. .
TRANSGENIC RESEARCH, 2013, 22 (02) :327-341
[2]   Evaluating the clinical value of the hypoxia burden index in patients with obstructive sleep apnea [J].
Chen, Fengwei ;
Chen, Kun ;
Zhang, Cheng ;
Chen, Xue ;
Huang, Junjun ;
Jia, Peng ;
Ma, Jing ;
Zhang, Jue ;
Fang, Jing ;
Wang, Guangfa .
POSTGRADUATE MEDICINE, 2018, 130 (04) :436-441
[3]   Reactive oxygen species, abiotic stress and stress combination [J].
Choudhury, Feroza K. ;
Rivero, Rosa M. ;
Blumwald, Eduardo ;
Mittler, Ron .
PLANT JOURNAL, 2017, 90 (05) :856-867
[4]   Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function [J].
Ciolkowski, Ingo ;
Wanke, Dierk ;
Birkenbihl, Rainer P. ;
Somssich, Imre E. .
PLANT MOLECULAR BIOLOGY, 2008, 68 (1-2) :81-92
[5]   WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis [J].
Devaiah, Ballachanda N. ;
Karthikeyan, Athikkattuvalasu S. ;
Raghothama, Kashchandra G. .
PLANT PHYSIOLOGY, 2007, 143 (04) :1789-1801
[6]   New insights on trehalose: a multifunctional molecule [J].
Elbein, AD ;
Pan, YT ;
Pastuszak, I ;
Carroll, D .
GLYCOBIOLOGY, 2003, 13 (04) :17R-27R
[7]   The WRKY superfamily of plant transcription factors [J].
Eulgem, T ;
Rushton, PJ ;
Robatzek, S ;
Somssich, IE .
TRENDS IN PLANT SCIENCE, 2000, 5 (05) :199-206
[8]   Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves [J].
Fan, L ;
Zheng, SQ ;
Wang, XM .
PLANT CELL, 1997, 9 (12) :2183-2196
[9]   Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice [J].
Fang, Yujie ;
You, Jun ;
Xie, Kabin ;
Xie, Weibo ;
Xiong, Lizhong .
MOLECULAR GENETICS AND GENOMICS, 2008, 280 (06) :547-563
[10]   Phytozome: a comparative platform for green plant genomics [J].
Goodstein, David M. ;
Shu, Shengqiang ;
Howson, Russell ;
Neupane, Rochak ;
Hayes, Richard D. ;
Fazo, Joni ;
Mitros, Therese ;
Dirks, William ;
Hellsten, Uffe ;
Putnam, Nicholas ;
Rokhsar, Daniel S. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D1178-D1186