Optimal control of the stationary quantum drift-diffusion model

被引:0
作者
Unterreiter, A.
Volkwein, S.
机构
[1] Tech Univ Berlin, Fak Math & Nat Wissensch 2, D-10623 Berlin, Germany
[2] Karl Franzens Univ Graz, Inst Math & Wissensch Rech, A-8010 Graz, Austria
关键词
optimal control; quantum drift diffusion model; optimality conditions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work an optimal control problem for a stationary quantum drift diffusion (QDD) model is analyzed. This QDD model contains four space-dependent observables: The non-negative particle density of electrons, the electrostatic potential, the quantum quasi-Fermi potential and the current density. The goal is to optimize the shape of quantum barriers in a quantum diode. Existence of optimal solutions is proved. Moreover, first-order necessary optimality conditions are derived.
引用
收藏
页码:85 / 111
页数:27
相关论文
共 19 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR [J].
ANCONA, MG ;
IAFRATE, GJ .
PHYSICAL REVIEW B, 1989, 39 (13) :9536-9540
[3]   On the stationary quantum drift-diffusion model [J].
Ben Abdallah, N ;
Unterreiter, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02) :251-275
[4]   Fast optimal design of semiconductor devices [J].
Burger, M ;
Pinnau, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :108-126
[5]   On the stationary semiconductor equations arising in modeling an LBIC technique [J].
Fang, WF ;
Ito, K .
APPLIED MATHEMATICS AND OPTIMIZATION, 1996, 33 (02) :189-202
[6]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[7]  
GILBARG D, 1983, FAST OPTIMAL DESIGN
[8]  
Hinze M, 2002, INT S NUM M, V139, P95
[9]   An optimal control approach to semiconductor design [J].
Hinze, M ;
Pinnau, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (01) :89-107
[10]   Newton's method for class of weakly singular optimal control problems [J].
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :896-916