Understanding fouling behaviour of ultrafiltration membrane processes and natural water using principal component analysis of fluorescence excitation-emission matrices

被引:72
作者
Peiris, Ramila H. [1 ]
Budman, Hector [1 ]
Moresoli, Christine [1 ]
Legge, Raymond L. [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Membrane fouling; Fluorescence spectroscopy; Principal component analysis; Natural water; Ultrafiltration; DISSOLVED ORGANIC-MATTER; DRINKING-WATER; HUMIC SUBSTANCES; MECHANISMS; NOM; SPECTROSCOPY; FILTRATION; PARTICLES; SPECTRA; PROTEIN;
D O I
10.1016/j.memsci.2010.03.047
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Fouling is a major obstacle for maintaining efficient membrane-based drinking water treatment processes. Natural organic matter (NOM) components such as humic substances (HS)- and protein-like matter as well as colloidal/particulate matter are known to be the major membrane foulants in ultrafiltration-based drinking water processes. In this study, a fluorescence excitation-emission matrix (EEM) approach was used for characterization of these major membrane foulants. Unlike most NOM and colloidal/particulate matter characterization techniques, this method can provide fast and consistent analyses with high instrumental sensitivity. Principal component analysis (PCA) of fluorescence EEM measurements collected during cross-flow ultrafiltration of river water was used to extract principal components (PCs) that contained information relevant to membrane fouling. These PCs were related to the major membrane foulants. HS, protein-like and colloidal/particulate matter present in natural water. PC score analysis revealed that colloidal/particulate matter mostly contributed to reversible fouling. HS- and protein-like matter were largely responsible for irreversible fouling behaviour. Fluorescence EEMs of the foulants extracted from the membranes also revealed different rejection characteristics for two different membranes, 60 kDa and 20 kDa. The proposed method proved suitable for identifying the major foulant components and their contribution to reversible and irreversible membrane fouling, illustrating its potential for monitoring and controlling membrane fouling in drinking water treatment applications. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 34 条
[1]   Fundamental understanding of organic matter fouling of membranes [J].
Amy, Gary .
DESALINATION, 2008, 231 (1-3) :44-51
[2]   Ultrafiltration of natural organic matter [J].
Aoustin, E ;
Schäfer, AI ;
Fane, AG ;
Waite, TD .
SEPARATION AND PURIFICATION TECHNOLOGY, 2001, 22-3 (1-3) :63-78
[3]   Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers [J].
Baker, A .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (05) :948-953
[4]   Examining CDOM fluorescence variability using principal component analysis: seasonal and regional modeling of three-dimensional fluorescence in the Gulf of Mexico [J].
Boehme, J ;
Coble, P ;
Conmy, R ;
Stovall-Leonard, A .
MARINE CHEMISTRY, 2004, 89 (1-4) :3-14
[5]   Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter [J].
Chen, W ;
Westerhoff, P ;
Leenheer, JA ;
Booksh, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (24) :5701-5710
[6]   CHARACTERIZATION OF DISSOLVED ORGANIC-MATTER IN THE BLACK-SEA BY FLUORESCENCE SPECTROSCOPY [J].
COBLE, PG ;
GREEN, SA ;
BLOUGH, NV ;
GAGOSIAN, RB .
NATURE, 1990, 348 (6300) :432-435
[7]  
Eriksson L., 2001, MULTIMEGAVARIATE DAT
[8]   Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes [J].
Fan, LH ;
Harris, JL ;
Roddick, FA ;
Booker, NA .
WATER RESEARCH, 2001, 35 (18) :4455-4463
[9]   The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water [J].
Fiksdal, Liv ;
Leiknes, TorOve .
JOURNAL OF MEMBRANE SCIENCE, 2006, 279 (1-2) :364-371
[10]   Effect of NOM characteristics and membrane type on microfiltration performance [J].
Gray, S. R. ;
Ritchie, C. B. ;
Tran, T. ;
Bolto, B. A. .
WATER RESEARCH, 2007, 41 (17) :3833-3841