Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae

被引:70
|
作者
Robine, Nicolas
Uematsu, Norio
Amiot, Franck
Gidrol, Xavier
Barillot, Emmanuel
Nicolas, Alain
Borde, Valerie
机构
[1] Univ Paris 06, Inst Curie, CNRS, UMR 7147,Inst Curie Recombinaison & Instabilite G, F-75248 Paris 05, France
[2] Inst Curie, Serv Bioinformat, F-75248 Paris, France
[3] CEA, Serv Genom Fonctionnelle, F-91057 Evry, France
关键词
D O I
10.1128/MCB.02063-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs) catalyzed by the Spoil protein. DSBs are not randomly distributed along chromosomes. To better understand factors that control the distribution of DSBs in budding yeast, we have examined the genome-wide binding and cleavage properties of the Gal4 DNA binding domain (Gal4BD)-Spo11 fusion protein. We found that Gal4BD-Spo11 cleaves only a subset of its binding sites, indicating that the association of Spoil with chromatin is not sufficient for DSB formation. In centromere-associated regions, the centromere itself prevents DSB cleavage by tethered Gal4BD-Spo11 since its displacement restores targeted DSB formation. In addition, we observed that new DSBs introduced by Gal4BD-Spo11 inhibit surrounding DSB formation over long distances (up to 60 kb), keeping constant the number of DSBs per chromosomal region. Together, these results demonstrate that the targeting of Spoil to new chromosomal locations leads to both local stimulation and genome-wide redistribution of recombination initiation and that some chromosomal regions are inherently cold regardless of the presence of Spoil.
引用
收藏
页码:1868 / 1880
页数:13
相关论文
共 50 条
  • [1] Genome-wide mapping of DNA strand breaks in Saccharomyces cerevisiae
    Subramanian, Hari K. K.
    Bernard, Sarah E.
    Chiang, Cheryl
    Parker, Stephen C. J.
    Tullius, Thomas D.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2013, 31 : 76 - 76
  • [2] DOUBLE-STRAND BREAKS CAN INITIATE MEIOTIC RECOMBINATION IN SACCHAROMYCES-CEREVISIAE
    KOLODKIN, AL
    KLAR, AJS
    STAHL, FW
    CELL, 1986, 46 (05) : 733 - 740
  • [3] A test of the CoHR motif associated with meiotic double-strand breaks in Saccharomyces cerevisiae
    Haring, SJ
    Lautner, LJ
    Comeron, JM
    Malone, RE
    EMBO REPORTS, 2004, 5 (01) : 41 - 46
  • [4] Quantification and genome-wide mapping of DNA double-strand breaks
    Gregoire, Marie-Chantal
    Massonneau, Julien
    Leduc, Frederic
    Arguin, Melina
    Brazeau, Marc-Andre
    Boissonneault, Guylain
    DNA REPAIR, 2016, 48 : 63 - 68
  • [5] MULTIPLE SITES FOR DOUBLE-STRAND BREAKS IN WHOLE MEIOTIC CHROMOSOMES OF SACCHAROMYCES-CEREVISIAE
    ZENVIRTH, D
    ARBEL, T
    SHERMAN, A
    GOLDWAY, M
    KLEIN, S
    SIMCHEN, G
    EMBO JOURNAL, 1992, 11 (09): : 3441 - 3447
  • [6] A PATHWAY FOR GENERATION AND PROCESSING OF DOUBLE-STRAND BREAKS DURING MEIOTIC RECOMBINATION IN SACCHAROMYCES-CEREVISIAE
    CAO, L
    ALANI, E
    KLECKNER, N
    CELL, 1990, 61 (06) : 1089 - 1101
  • [7] Genome-wide detection of DNA double-strand breaks by in-suspension BLISS
    Bouwman, Britta A. M.
    Agostini, Federico
    Garnerone, Silvano
    Petrosino, Giuseppe
    Gothe, Henrike J.
    Sayols, Sergi
    Moor, Andreas E.
    Itzkovitz, Shalev
    Bienko, Magda
    Roukos, Vassilis
    Crosetto, Nicola
    NATURE PROTOCOLS, 2020, 15 (12) : 3894 - 3941
  • [8] Genome-wide mapping of meiosis-induced DNA double-strand breaks
    Robert Shroff
    Michael Lichten
    Nature Genetics, 1999, 23 (Suppl 3) : 73 - 73
  • [9] Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae
    Buhler, Cyril
    Borde, Valerie
    Lichten, Michael
    PLOS BIOLOGY, 2007, 5 (12): : 2797 - 2808
  • [10] Genome-wide detection of DNA double-strand breaks by in-suspension BLISS
    Britta A. M. Bouwman
    Federico Agostini
    Silvano Garnerone
    Giuseppe Petrosino
    Henrike J. Gothe
    Sergi Sayols
    Andreas E. Moor
    Shalev Itzkovitz
    Magda Bienko
    Vassilis Roukos
    Nicola Crosetto
    Nature Protocols, 2020, 15 : 3894 - 3941