Changes of Small Non-coding RNAs by Severe Acute Respiratory Syndrome Coronavirus 2 Infection

被引:20
作者
Wu, Wenzhe [1 ]
Choi, Eun-Jin [1 ]
Wang, Binbin [2 ]
Zhang, Ke [1 ]
Adam, Awadalkareem [2 ]
Huang, Gengming [3 ]
Tunkle, Leo [4 ,5 ,6 ]
Huang, Philip [4 ,7 ]
Goru, Rohit [4 ,7 ]
Imirowicz, Isabella [4 ,7 ]
Henry, Leanne [4 ,6 ]
Lee, Inhan [4 ]
Dong, Jianli [3 ,8 ]
Wang, Tian [2 ,3 ,8 ]
Bao, Xiaoyong [1 ,8 ,9 ]
机构
[1] Univ Texas Med Branch, Dept Pediat, Galveston, TX 77555 USA
[2] Univ Texas Med Branch, Dept Microbiol, Galveston, TX 77555 USA
[3] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA
[4] MiRcore, Ann Arbor, MI USA
[5] Univ Michigan, Dept Nucl Engn & Radiol Sience, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Comp Sci, Ann Arbor, MI 48109 USA
[7] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
[8] Univ Texas Med Branch, Inst Human Infect & Immun, Galveston, TX 77555 USA
[9] Univ Texas Med Branch, Inst Translat Sci, Galveston, TX 77555 USA
基金
美国国家卫生研究院;
关键词
SARS-CoV-2; TRF; SARS-CoV-2-derived sncRNAs; tRF5DC; viral replication and SARS-CoV-2-derived sncRNAs; FRAGMENTS; IDENTIFICATION; CONTRIBUTE;
D O I
10.3389/fmolb.2022.821137
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. In the context of viral infections, small non-coding RNAs (sncRNAs) are known to play important roles in regulating the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we found that sncRNA profiles in human nasopharyngeal swabs (NPS) samples are significantly impacted by SARS-CoV-2. Among impacted sncRNAs, tRFs are the most significantly affected and most of them are derived from the 5 '-end of tRNAs (tRF5). Such a change was also observed in SARS-CoV-2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several small virus-derived ncRNAs (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3 '-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.
引用
收藏
页数:18
相关论文
共 55 条
[1]   NON-CODING RNAs IN DEVELOPMENT AND DISEASE: BACKGROUND, MECHANISMS, AND THERAPEUTIC APPROACHES [J].
Beermann, Julia ;
Piccoli, Maria-Teresa ;
Viereck, Janika ;
Thum, Thomas .
PHYSIOLOGICAL REVIEWS, 2016, 96 (04) :1297-1325
[2]   Cells and Culture Systems Used to Model the Small Airway Epithelium [J].
Bhowmick, Rudra ;
Gappa-Fahlenkamp, Heather .
LUNG, 2016, 194 (03) :419-428
[3]   Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders [J].
Blanco, Sandra ;
Dietmann, Sabine ;
Flores, Joana V. ;
Hussain, Shobbir ;
Kutter, Claudia ;
Humphreys, Peter ;
Lukk, Margus ;
Lombard, Patrick ;
Treps, Lucas ;
Popis, Martyna ;
Kellner, Stefanie ;
Hoelter, Sabine M. ;
Garrett, Lillian ;
Wurst, Wolfgang ;
Becker, Lore ;
Klopstock, Thomas ;
Fuchs, Helmut ;
Gailus-Durner, Valerie ;
de Angelis, Martin Hrabe ;
Karadottir, Ragnhildur T. ;
Helm, Mark ;
Ule, Jernej ;
Gleeson, Joseph G. ;
Odom, Duncan T. ;
Frye, Michaela .
EMBO JOURNAL, 2014, 33 (18) :2020-2039
[4]   Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 [J].
Blanco-Melo, Daniel ;
Nilsson-Payant, Benjamin E. ;
Liu, Wen-Chun ;
Uhl, Skyler ;
Hoagland, Daisy ;
Moller, Rasmus ;
Jordan, Tristan X. ;
Oishi, Kohei ;
Panis, Maryline ;
Sachs, David ;
Wang, Taia T. ;
Schwartz, Robert E. ;
Lim, Jean K. ;
Albrecht, Randy A. ;
tenOever, Benjamin R. .
CELL, 2020, 181 (05) :1036-+
[5]   Syncytia formation by SARS-CoV-2-infected cells (vol 39, e106267, 2020) [J].
Buchrieser, Julian ;
Dufloo, Jeremy ;
Hubert, Mathieu ;
Monel, Blandine ;
Planas, Delphine ;
Rajah, Maaran Michael ;
Planchais, Cyril ;
Porrot, Francoise ;
Guivel-Benhassine, Florence ;
Van der Werf, Sylvie ;
Casartelli, Nicoletta ;
Mouquet, Hugo ;
Bruel, Timothee ;
Schwartz, Olivier .
EMBO JOURNAL, 2021, 40 (03)
[6]   Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections [J].
Chandorkar, P. ;
Posch, W. ;
Zaderer, V. ;
Blatzer, M. ;
Steger, M. ;
Ammann, C. G. ;
Binder, U. ;
Hermann, M. ;
Hoertnagl, P. ;
Lass-Floerl, C. ;
Wilflingseder, D. .
SCIENTIFIC REPORTS, 2017, 7
[7]   ELAC2, an Enzyme for tRNA Maturation, Plays a Role in the Cleavage of a Mature tRNA to Produce a tRNA-Derived RNA Fragment During Respiratory Syncytial Virus Infection [J].
Choi, Eun-Jin ;
Wu, Wenzhe ;
Zhang, Ke ;
Lee, Inhan ;
Kim, In-Hoo ;
Lee, Yong Sun ;
Bao, Xiaoyong .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 7
[8]   Small Noncoding RNAs: Biogenesis, Function, and Emerging Significance in Toxicology [J].
Choudhuri, Supratim .
JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2010, 24 (03) :195-216
[9]  
Chunyu L., 2005, bioRxiv, DOI [10.1101/2021.05.16.444324, DOI 10.1101/2021.05.16.444324]
[10]   Systematic classification of non-coding RNAs by epigenomic similarity [J].
Dozmorov, Mikhail G. ;
Giles, Cory B. ;
Koelsch, Kristi A. ;
Wren, Jonathan D. .
BMC BIOINFORMATICS, 2013, 14