Interfacial engineering of an FeOOH@Co3O4 heterojunction for efficient overall water splitting and electrocatalytic urea oxidation

被引:46
作者
Zhang, Qian [1 ]
Sun, Maosong [2 ]
Yao, Mengqi [3 ]
Zhu, Jie [1 ]
Yang, Sudong [1 ]
Chen, Lin [1 ]
Sun, Baolong [5 ]
Zhang, Jicai [2 ,4 ]
Hu, Wencheng [5 ]
Zhao, Peng [1 ]
机构
[1] Chengdu Univ, Inst Adv Study, 2025, Chengluo 12 Ave, Chengdu 610106, Peoples R China
[2] Guangxi Univ, Res Ctr Optoelect Mat & Devices, Sch Phys Sci Technol, Nanning 530004, Peoples R China
[3] Southwest Inst Tech Phys, Chengdu 610041, Peoples R China
[4] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
[5] Univ Elect Sci & Technol China, Ctr Appl Chem, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterostructure; Bifunctional catalyst; Overall water splitting; Urea oxidation reaction; Electronic structure; BIFUNCTIONAL ELECTROCATALYST; EVOLUTION; HETEROSTRUCTURE; NANOHYBRIDS;
D O I
10.1016/j.jcis.2022.05.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Constructing heterostructure is an efficient method to provide more active sites and optimize electronic structure for improving the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) performance. Herein, the 3D FeOOH@Co3O4 heterostructure was constructed using FeOOH layer (10-20 nm) coated on the surface of Co(3)O(4 )nanoneedles through the strong hydrolysis of Fe3+. The FeOOH@Co3O4 heterostructure not only retains the nanoneedle structure with open frameworks, but also improves the specific surface area and expedites the charge transfer. The FeOOH@Co3O4-240 heterostructure affords a remarkable OER performance with low overpotential of 228 mV at 10 mA center dot cm(-2) in 1 M KOH solution. The symmetrical urea electrolyzer using FeOOH@Co3O4-240 as both anode and cathode delivers 10 mA/cm(2) at 1.43 V. Density functional theory (DFT) calculations unveil that the FeOOH@Co3O4-240 heterostructure could adjust the electronic structure and strengthen the conductivity. This work offered a facile strategy for designing heterojunction catalysts in an economic way. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 63 条
[1]   Bifunctional 2D Electrocatalysts of Transition Metal Hydroxide Nanosheet Arrays for Water Splitting and Urea Electrolysis [J].
Babar, Pravin ;
Lokhande, Abhishek ;
Karade, Vijay ;
Pawar, Bharati ;
Gang, Myeng Gil ;
Pawar, Sambhaji ;
Kim, Jin Hyeok .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (11) :10035-10043
[2]   Discriminatory {040}-Reduction Facet/Ag0 Schottky Barrier Coupled {040/110}-BiVO4@Ag@CoAl-LDH Z-Scheme Isotype Heterostructure [J].
Baral, Basudev ;
Sahoo, Dipti Prava ;
Parida, Kulamani .
INORGANIC CHEMISTRY, 2021, 60 (03) :1698-1715
[3]   Construction of M-BiVO4/T-BiVO4 isotype heterojunction for enhanced photocatalytic degradation of Norfloxacine and Oxygen evolution reaction [J].
Baral, Basudev ;
Reddy, K. Hemalata ;
Parida, K. M. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 554 :278-295
[4]   CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels [J].
Brunetti, Adele ;
Pomilla, Francesca Rita ;
Marci, Giuseppe ;
Garcia-Lopez, Elisa Isabel ;
Fontananova, Enrica ;
Palmisano, Leonardo ;
Barbieri, Giuseppe .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 255
[5]   N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides [J].
Cai, Jinyan ;
Song, Yao ;
Zang, Yipeng ;
Niu, Shuwen ;
Wu, Yishang ;
Xie, Yufang ;
Zheng, Xusheng ;
Liu, Yun ;
Lin, Yue ;
Liu, Xiaojing ;
Wang, Gongming ;
Qian, Yitai .
SCIENCE ADVANCES, 2020, 6 (01)
[6]   PEO-PPO-PEO induced holey NiFe-LDH nanosheets on Ni foam for efficient overall water-splitting and urea electrolysis [J].
Chen, Luyao ;
Wang, Haiyan ;
Tan, Lei ;
Qiao, Danni ;
Liu, Xien ;
Wen, Yonghong ;
Hou, Wanguo ;
Zhan, Tianrong .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 618 :141-148
[7]   Significantly improved conductivity of spinel Co3O4 porous nanowires partially substituted by Sn in tetrahedral sites for high-performance quasi-solid-state supercapacitors [J].
Chen, Yunjian ;
Zhu, Jia ;
Wang, Ni ;
Cheng, Huanyu ;
Tang, Xianzhong ;
Komarneni, Sridhar ;
Hu, Wencheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (11) :7005-7017
[8]   Cu(I)/Cu(II) partially substituting the Co(II) of spinel Co3O4 nanowires with 3D interconnected architecture on carbon cloth for high-performance flexible solid-state supercapacitors [J].
Chen, Yunjian ;
Hu, Haohui ;
Wang, Ni ;
Sun, Baolong ;
Yao, Mengqi ;
Hu, Wencheng .
CHEMICAL ENGINEERING JOURNAL, 2020, 391
[9]   A hierarchically combined reduced graphene oxide/Nickel oxide hybrid supercapacitor device demonstrating compliable flexibility and high energy density [J].
Deng, Bo-wen ;
Yang, Yi ;
Liu, Yu-xin ;
Yin, Bo ;
Yang, Ming-bo .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 618 :399-410
[10]   Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces [J].
Ding, Chunmei ;
Shi, Jingying ;
Wang, Zhiliang ;
Li, Can .
ACS CATALYSIS, 2017, 7 (01) :675-688