Multivariate spline and algebraic geometry

被引:26
作者
Wang, RH [1 ]
机构
[1] Dalian Univ Technol, Inst Math Sci, Dalian 116024, Peoples R China
关键词
multivariate (weak) spline; algebraic geometry; piecewise algebraic curve; piecewise algebraic variety;
D O I
10.1016/S0377-0427(00)00344-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this survey is to emphasize the special relationship between multivariate spline and algebraic geometry. We will not only point out the algebraic-geometric method of multivariate spline, but also the algebraic-geometric background and essence of multivariate spline. Especially, we have made an introduction to the so-called piecewise algebraic curve, piecewise algebraic variety, and some of their properties. (C) 2000 Elsevier Science B.V. All rights reserved. MSC: 14C17; 14G40; 41A15; 41A46; 65D07; 65D10.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 24 条
[1]   A DIMENSION SERIES FOR MULTIVARIATE SPLINES [J].
BILLERA, LJ ;
ROSE, LL .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (02) :107-128
[2]   HOMOLOGY OF SMOOTH SPLINES - GENERIC TRIANGULATIONS AND A CONJECTURE OF STRANG [J].
BILLERA, LJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 310 (01) :325-340
[3]  
Buchberger B., 1985, RECENT TRENDS MULTID, P184
[4]   SPACES OF BIVARIATE CUBIC AND QUARTIC SPLINES ON TYPE-1 TRIANGULATIONS [J].
CHUI, CK ;
WANG, RH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 101 (02) :540-554
[5]  
CIARLET P, 1975, LECT FINITE ELEMENT
[6]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[7]  
DU H, 2000, IN PRESS P COMP GEOM
[8]  
MORGAN J, 1975, UNPUB DIMENSION PIEC
[9]  
Shafarevich I. R., 1977, BASIC ALGEBRAIC GEOM, V1
[10]  
SHAFAREVICH IR, 1974, BASIC ALGEBRAIC GEOM, V2