Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models

被引:11
作者
Chan, Ron Tat Lung [1 ]
机构
[1] Univ London, Royal Docks Business Sch, Docklands Campus 4-6 Univ Way, London E16 2RD, England
关键词
Adaptive method; Levy processes; Option pricing; Parabolic partial integro-differential equations; Singularity; Radial basis function; The Merton jump-diffusions model; BASIS FUNCTION INTERPOLATION; DATA APPROXIMATION SCHEME; MULTIQUADRICS; RETURNS;
D O I
10.1007/s10614-016-9563-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
The aim of this paper is to show that option prices in jump-diffusion models can be computed using meshless methods based on radial basis function (RBF) interpolation instead of traditional mesh-based methods like finite differences or finite elements. The RBF technique is demonstrated by solving the partial integro-differential equation for American and European options on non-dividend-paying stocks in the Merton jump-diffusion model, using the inverse multiquadric radial basis function. The method can in principle be extended to L,vy-models. Moreover, an adaptive method is proposed to tackle the accuracy problem caused by a singularity in the initial condition so that the accuracy in option pricing in particular for small time to maturity can be improved.
引用
收藏
页码:623 / 643
页数:21
相关论文
共 32 条
[1]  
Andersen L., 2000, Review of derivatives research, V4, P231
[2]  
[Anonymous], 2004, CHAPMAN HALL CRC FIN
[3]  
[Anonymous], 2003, RADIAL BASIS FUNCTIO
[4]  
[Anonymous], 2005, Cambridge Monograph, Applied Comput. Math.
[5]   Implicit-explicit numerical schemes for jump-diffusion processes [J].
Briani, Maya ;
Natalini, Roberto ;
Russo, Giovanni .
CALCOLO, 2007, 44 (01) :33-57
[6]  
Brummelhuis R., 2014, Appl. Math. Finance., V21, P238
[7]   The fine structure of asset returns: An empirical investigation [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
JOURNAL OF BUSINESS, 2002, 75 (02) :305-332
[8]   Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme [J].
Chan, Ron Tat Lung ;
Hubbert, Simon .
REVIEW OF DERIVATIVES RESEARCH, 2014, 17 (02) :161-189
[9]   A finite difference scheme for option pricing in jump diffusion and exponential Levy models [J].
Cont, R ;
Voltchkova, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) :1596-1626
[10]   Robust numerical methods for contingent claims under jump diffusion processes [J].
D'Halluin, Y ;
Forsyth, PA ;
Vetzal, KR .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (01) :87-112