Activation of Shaker potassium channels I.: Characterization of voltage-dependent transitions

被引:127
作者
Schoppa, NE [1 ]
Sigworth, FJ [1 ]
机构
[1] Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA
关键词
ion channel; gating current; single-channel current; patch clamp; kinetic model;
D O I
10.1085/jgp.111.2.271
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The conformational changes associated with activation gating in Shaker potassium channels are functionally characterized in patch-clamp recordings made from Xenopus laevis oocytes expressing Shaker channels with fast inactivation removed. Estimates of the forward and backward rates for transitions are obtained by fitting exponentials to macroscopic ionic and gating cur rent relaxations at voltage extremes, where we assume that transitions are unidirectional. The assignment of different rates is facilitated by using voltage protocols that incorporate prepulses to preload channels into different distributions of states, yielding test currents that reflect different subsets of transitions. These data yield direct estimates of the rate constants and partial charges associated with three forward and three backward transitions, as well as estimates of the partial charges associated with other transitions. The partial charges correspond to an average charge movement of 0.5 e(0) during each transition in the activation process. This value implies that activation gating involves a large number of transitions to account for the total gathering charge displacement of 13 e(0). The characterization of the gating transitions here forms the basis for constraining a detailed gating model to be described in a subsequent paper of this series.
引用
收藏
页码:271 / 294
页数:24
相关论文
共 59 条
[1]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[2]   CURRENTS RELATED TO MOVEMENT OF GATING PARTICLES OF SODIUM CHANNELS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
NATURE, 1973, 242 (5398) :459-461
[3]   MOLECULAR-BASIS OF GATING CHARGE IMMOBILIZATION IN SHAKER POTASSIUM CHANNELS [J].
BEZANILLA, F ;
PEROZO, E ;
PAPAZIAN, DM ;
STEFANI, E .
SCIENCE, 1991, 254 (5032) :679-683
[4]   GATING OF SHAKER K+ CHANNELS .2. THE COMPONENTS OF GATING CURRENTS AND A MODEL OF CHANNEL ACTIVATION [J].
BEZANILLA, F ;
PEROZO, E ;
STEFANI, E .
BIOPHYSICAL JOURNAL, 1994, 66 (04) :1011-1021
[5]   POTASSIUM ION CURRENT IN THE SQUID GIANT AXON - DYNAMIC CHARACTERISTIC [J].
COLE, KS ;
MOORE, JW .
BIOPHYSICAL JOURNAL, 1960, 1 (01) :1-14
[6]  
Colquhoun David, 1995, P483
[7]   QUANTAL CHARGE REDISTRIBUTIONS ACCOMPANYING THE STRUCTURAL TRANSITIONS OF SODIUM-CHANNELS [J].
CONTI, F ;
STUHMER, W .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 1989, 17 (02) :53-59
[8]   FLUCTUATIONS IN ION CHANNEL GATING CURRENTS - ANALYSIS OF NONSTATIONARY SHOT NOISE [J].
CROUZY, SC ;
SIGWORTH, FJ .
BIOPHYSICAL JOURNAL, 1993, 64 (01) :68-76
[9]   MOLECULAR-MODEL OF THE ACTION-POTENTIAL SODIUM-CHANNEL [J].
GUY, HR ;
SEETHARAMULU, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (02) :508-512
[10]   IMPROVED PATCH-CLAMP TECHNIQUES FOR HIGH-RESOLUTION CURRENT RECORDING FROM CELLS AND CELL-FREE MEMBRANE PATCHES [J].
HAMILL, OP ;
MARTY, A ;
NEHER, E ;
SAKMANN, B ;
SIGWORTH, FJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1981, 391 (02) :85-100