Some uncertainty inequalities for the continuous wavelet transform

被引:3
作者
Alhajji, Fatima [1 ]
Ghobber, Saifallah [1 ,2 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, LR11ES11 Anal Math & Applicat, Tunis 2092, Tunisia
关键词
Wavelet transform; Affine group; Heisenberg uncertainty inequality; Pitt's inequality; Beckner's inequality; Uncertainty principle; Sobolev's inequality; PRINCIPLES;
D O I
10.1007/s11868-021-00388-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to prove some uncertainty inequalities for the continuous wavelet transform in the multidimensional setting.
引用
收藏
页数:25
相关论文
共 26 条
[1]   SUPPORT PROPERTIES OF LP-FUNCTIONS AND THEIR FOURIER-TRANSFORMS [J].
AMREIN, WO ;
BERTHIER, AM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (03) :258-267
[2]   Uncertainty principles for the continuous shearlet transforms in arbitrary space dimensions [J].
Bahri, Mawardi ;
Shah, Firdous A. ;
Tantary, Azhar Y. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (07) :538-555
[3]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[4]   Shapiro's uncertainty principle and localization operators associated to the continuous wavelet transform [J].
Ben Hamadi, Nadia ;
Lamouchi, Haythem .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2017, 8 (01) :35-53
[6]   THE AFFINE UNCERTAINTY PRINCIPLE IN ONE AND 2 DIMENSIONS [J].
DAHLKE, S ;
MAASS, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) :293-305
[7]   UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY [J].
DONOHO, DL ;
STARK, PB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) :906-931
[8]   The uncertainty principle: A mathematical survey [J].
Folland, GB ;
Sitaram, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :207-238
[10]   Fourier-Like Multipliers and Applications for Integral Operators [J].
Ghobber, Saifallah .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) :1059-1092