Rationalizing PROTAC-Mediated Ternary Complex Formation Using Rosetta

被引:86
作者
Bai, Nan [1 ,2 ]
Miller, Sven A. [1 ]
Andrianov, Grigorii, V [1 ,3 ]
Yates, Max [1 ]
Kirubakaran, Palani [1 ]
Karanicolas, John [1 ]
机构
[1] Fox Chase Canc Ctr, Program Mol Therapeut, Philadelphia, PA 19111 USA
[2] Univ Kansas, Dept Mol Biosci, Lawrence, KS 66045 USA
[3] Kazan Fed Univ, Inst Fundamental Med & Biol, Kazan 420008, Russia
基金
美国国家科学基金会;
关键词
Binding energy - Biosynthesis - Computational methods;
D O I
10.1021/acs.jcim.0c01451
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Proteolysis-targeting chimaeras (PROTACs) are molecules that combine a target-binding warhead with an E3 ligase-recruiting moiety; by drawing the target protein into a ternary complex with the E3 ligase, PROTACs induce target protein degradation. While PROTACs hold exciting potential as chemical probes and as therapeutic agents, development of a PROTAC typically requires synthesis of numerous analogs to thoroughly explore variations on the chemical linker; without extensive trial and error, it is unclear how to link the two protein-recruiting moieties to promote formation of a productive ternary complex. Here, we describe a structure-based computational method for evaluating the suitability of a given linker for ternary complex formation. Our method uses Rosetta to dock the protein components and then builds the PROTAC from its component fragments into each binding mode; complete models of the ternary complex are then refined. We apply this approach to retrospectively evaluate multiple PROTACs from the literature, spanning diverse target proteins. We find that modeling ternary complex formation is sufficient to explain both activity and selectivity reported for these PROTACs, implying that other cellular factors are not key determinants of activity in these cases. We further find that interpreting PROTAC activity is best approached using an ensemble of structures of the ternary complex rather than a single static conformation and that members of a structurally conserved protein family can be recruited by the same PROTAC through vastly different binding modes. To encourage adoption of these methods and promote further analyses, we disseminate both the computational methods and the models of ternary complexes.
引用
收藏
页码:1368 / 1382
页数:15
相关论文
共 83 条
[1]   The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design [J].
Alford, Rebecca F. ;
Leaver-Fay, Andrew ;
Jeliazkov, Jeliazko R. ;
O'Meara, Matthew J. ;
DiMaio, Frank P. ;
Park, Hahnbeom ;
Shapovalov, Maxim V. ;
Renfrew, P. Douglas ;
Mulligan, Vikram K. ;
Kappel, Kalli ;
Labonte, Jason W. ;
Pacella, Michael S. ;
Bonneau, Richard ;
Bradley, Philip ;
Dunbrack, Roland L., Jr. ;
Das, Rhiju ;
Baker, David ;
Kuhlman, Brian ;
Kortemme, Tanja ;
Gray, Jeffrey J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) :3031-3048
[2]   Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs [J].
Anderson, Niall A. ;
Cryan, Jenni ;
Ahmed, Adil ;
Dai, Han ;
McGonagle, Grant A. ;
Rozier, Christine ;
Benowitz, Andrew B. .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2020, 30 (09)
[3]   p63 is a cereblon substrate involved in thalidomide teratogenicity [J].
Asatsuma-Okumura, Tomoko ;
Ando, Hideki ;
De Simone, Marco ;
Yamamoto, Junichi ;
Sato, Tomomi ;
Shimizu, Nobuyuki ;
Asakawa, Kazuhide ;
Yamaguchi, Yuki ;
Ito, Takumi ;
Guerrini, Luisa ;
Handa, Hiroshi .
NATURE CHEMICAL BIOLOGY, 2019, 15 (11) :1077-+
[4]   ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules [J].
Ashkenazy, Haim ;
Abadi, Shiran ;
Martz, Eric ;
Chay, Ofer ;
Mayrose, Itay ;
Pupko, Tal ;
Ben-Tal, Nir .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W344-W350
[5]  
Barry Michele, 2006, Sci STKE, V2006, ppe21
[6]   Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity [J].
Bian, Jinlei ;
Ren, Jie ;
Li, Yongren ;
Wang, Jubo ;
Xu, Xi ;
Feng, Yifan ;
Tang, Hui ;
Wang, Yajing ;
Li, Zhiyu .
BIOORGANIC CHEMISTRY, 2018, 81 :373-381
[7]   Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead [J].
Bondeson, Daniel P. ;
Smith, Blake E. ;
Burslem, George M. ;
Buhimschi, Alexandru D. ;
Hines, John ;
Jaime-Figueroa, Saul ;
Wang, Jing ;
Hamman, Brian D. ;
Ishchenko, Alexey ;
Crews, Craig M. .
CELL CHEMICAL BIOLOGY, 2018, 25 (01) :78-+
[8]  
Bondeson DP, 2015, NAT CHEM BIOL, V11, P611, DOI [10.1038/NCHEMBIO.1858, 10.1038/nchembio.1858]
[9]   Homolog-Selective Degradation as a Strategy to Probe the Function of CDK6 in AML [J].
Brand, Matthias ;
Jiang, Baishan ;
Bauer, Sophie ;
Donovan, Katherine A. ;
Liang, Yanke ;
Wang, Eric S. ;
Nowak, Radoslaw P. ;
Yuan, Jingting C. ;
Zhang, Tinghu ;
Kwiatkowski, Nicholas ;
Muller, Andre C. ;
Fischer, Eric S. ;
Gray, Nathanael S. ;
Winter, Georg E. .
CELL CHEMICAL BIOLOGY, 2019, 26 (02) :300-+
[10]   HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of Halo Tag Fusion Proteins [J].
Buckley, Dennis L. ;
Raina, Kanak ;
Darricarrere, Nicole ;
Hines, John ;
Gustafson, Jeffrey L. ;
Smith, Ian E. ;
Miah, Aija H. ;
Harling, John D. ;
Crews, Craig M. .
ACS CHEMICAL BIOLOGY, 2015, 10 (08) :1831-1837