Background There is a universal need to increase the number of adults meeting physical activity (PA) recommendations to help improve health. In recent years, electrically assisted bicycles (e-bikes) have emerged as a promising method for supporting people to initiate and maintain physical activity levels. To the best of our knowledge, there have been no meta-analyses conducted to quantify the difference in physiological responses between e-cycling with electrical assistance, e-cycling without assistance, conventional cycling, and walking. Methods A systematic review and meta-analysis was conducted following PRISMA guidelines. We identified short-term e-bike studies, which utilized a crossover design comparing physiological outcomes when e-cycling with electrical assistance, e-cycling without electrical assistance, conventional cycling, or walking. Energy expenditure (EE), heart rate (HR), oxygen consumption (VO2), power output (PO), and metabolic equivalents (METs) outcomes were included within the meta-analysis. Results Fourteen studies met our inclusion criteria (N = 239). E-cycling with electrical assistance resulted in a lower energy expenditure (EE) [SMD = -0.46 (-0.98, 0.06), p = 0.08], heart rate (HR) [MD = -11.41 (-17.15, -5.68), p < 0.000, beats per minute], oxygen uptake (VO2) [SMD = -0.57 (-0.96, -0.17), p = 0.005], power output (PO) [MD = -31.19 (-47.19 to -15.18), p = 0.000, Watts], and metabolic equivalent (MET) response [MD = -0.83 (-1.52, -0.14), p = 0.02, METs], compared with conventional cycling. E-cycling with moderate electrical assistance resulted in a greater HR response [MD 10.38 (-1.48, 22.23) p = 0.09, beats per minute], and VO2 response [SMD 0.34 (-0.14, 0.82) p = 0.16] compared with walking. Conclusions E-cycling was associated with increased physiological responses that can confer health benefits.