Scalable Distributed Optimization with Separable Variables in Multi-Agent Networks

被引:0
作者
Shorinwa, Olaoluwa [1 ]
Halsted, Trevor [1 ]
Schwager, Mac [2 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
来源
2020 AMERICAN CONTROL CONFERENCE (ACC) | 2020年
基金
美国国家科学基金会;
关键词
SUBGRADIENT METHODS; CONSENSUS;
D O I
10.23919/acc45564.2020.9147590
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robotics, signal processing, and other disciplines involve distributed data collection and storage for state estimation, control, and predictive modeling using optimization. We consider large-scale optimization problems in which multiple agents with limited resources communicate over a network to obtain the optimal variables of the centralized problem. In this work, we present the Separable Optimization Variable ADMM (SOVA) method where each agent optimizes only over a subset of the optimization variables relevant to its data or role, avoiding unnecessary optimization over all the problem variables. We demonstrate superior convergence rates of the SOVA method compared to previous distributed ADMM methods. Further, we show applications of the SOVA method to robotics and data modeling.
引用
收藏
页码:3619 / 3626
页数:8
相关论文
共 19 条
[1]  
Agarwal A., 2010, Advances in Neural Information Processing Systems, P550
[2]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[3]   Multi-Agent Distributed Optimization via Inexact Consensus ADMM [J].
Chang, Tsung-Hui ;
Hong, Mingyi ;
Wang, Xiangfeng .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (02) :482-497
[4]   A PROXIMAL-BASED DECOMPOSITION METHOD FOR CONVEX MINIMIZATION PROBLEMS [J].
CHEN, G ;
TEBOULLE, M .
MATHEMATICAL PROGRAMMING, 1994, 64 (01) :81-101
[5]   DECOMPOSITION PRINCIPLE FOR LINEAR-PROGRAMS [J].
DANTZIG, GB ;
WOLFE, P .
OPERATIONS RESEARCH, 1960, 8 (01) :101-111
[6]  
ECKSTEIN J, 1994, LARGE SCALE OPTIMIZATION: STATE OF THE ART, P115
[7]   A new inexact alternating directions method for monotone variational inequalities [J].
He, BS ;
Liao, LZ ;
Han, DR ;
Yang, H .
MATHEMATICAL PROGRAMMING, 2002, 92 (01) :103-118
[8]  
Iutzeler F, 2013, IEEE DECIS CONTR P, P3671, DOI 10.1109/CDC.2013.6760448
[9]   Alternating Proximal Gradient Method for Convex Minimization [J].
Ma, Shiqian .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (02) :546-572
[10]   Distributed Sparse Linear Regression [J].
Mateos, Gonzalo ;
Bazerque, Juan Andres ;
Giannakis, Georgios B. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) :5262-5276