M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy

被引:34
|
作者
Wang, Wenshen [1 ,2 ]
Li, Fenfen [1 ,2 ]
Li, Shibo [1 ,2 ]
Hu, Yi [1 ,2 ]
Xu, Mengran [3 ]
Zhang, Yuanyuan [1 ,2 ]
Khan, Muhammad Imran [1 ,2 ]
Wang, Shaozhen [1 ,2 ]
Wu, Min [3 ]
Ding, Weiping [1 ,2 ]
Qiu, Bensheng [1 ,2 ]
机构
[1] Univ Sci & Technol China, Natl Lab Phys Sci Microscale, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Ctr Biomed Engn, Hefei 230027, Peoples R China
[3] Anhui Med Univ, Affiliated Hosp 1, Hefei 230022, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2021年 / 81卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
M2 macrophages-targeted peptide; Iron oxide nanoparticles; Magnetic resonance imaging; Magnetic hyperthermia therapy; Tumor immune microenvironment; TUMOR-ASSOCIATED MACROPHAGES; MRI CONTRAST; MONOCLONAL-ANTIBODY; CANCER-THERAPY; POLARIZATION; RECEPTOR; MECHANISMS; CYTOKINE; DELIVERY; GROWTH;
D O I
10.1016/j.jmst.2020.11.058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tumor-associated macrophages (TAMs) play an important role in tumor development and progression. In particular, M2 TAMs can promote tumor growth by facilitating tumor progression and malignant behaviors. Selectively targeted elimination of M2 TAMs to inhibit tumor progression is of great significance for cancer treatment. Iron oxide nanoparticles based magnetic hyperthermia therapy (MHT) is a classical approach to destroy tumor tissue with deep penetration depth. In this study, we developed a typical M2 macrophage-targeted peptide (M2pep) functionalized superparamagnetic iron oxide nanoparticle (SPIO) for magnetic resonance imaging (MRI)-guided MHT in an orthotopic breast cancer mouse model. The obtained multifunctional SPIO-M2pep with a hydrodynamic diameter of 20 nm showed efficient targeting capability, high transverse relaxivity (149 mM(-1) s(-1)) and satisfactory magnetic hyperthermia performance in vitro. In vivo studies demonstrated that the SPIO-M2pep based MRI can monitor the distribution of nanoparticles in tumor and indicate the suitable timing for MHT. The M2 macrophage-targeted MHT significantly reduced the tumor volume and the population of pro-tumoral M2 TAMs in tumor. In addition, the SPIO-M2pep based MHT can remodel the tumor immune microenvironment (TIME). The multifunctional SPIO-M2pep with M2 macrophage-targeting ability, high magnetic hyperthermia efficiency, MR imaging capability and effective role in remodeling the TIME hold great potential to improve clinical cancer therapy outcomes. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 50 条
  • [41] Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer
    Hedayatnasab, Ziba
    Dabbagh, Ali
    Abnisa, Faisal
    Daud, Wan Mohd Ashri Wan
    EUROPEAN POLYMER JOURNAL, 2020, 133
  • [42] Magnetic Prussian Blue Nanoparticles for Targeted Photothermal Therapy under Magnetic Resonance Imaging Guidance
    Fu, Guanglei
    Liu, Wei
    Li, Yanyan
    Jin, Yushen
    Jiang, Lingdong
    Liang, Xiaolong
    Feng, Shanshan
    Dai, Zhifei
    BIOCONJUGATE CHEMISTRY, 2014, 25 (09) : 1655 - 1663
  • [43] Image-Guided Magnetic Thermoseed Navigation and Tumor Ablation Using a Magnetic Resonance Imaging System
    Baker, Rebecca R.
    Payne, Christopher
    Yu, Yichao
    Mohseni, Matin
    Connell, John J.
    Lin, Fangyu
    Harrison, Ian F.
    Southern, Paul
    Rudrapatna, Umesh S.
    Stuckey, Daniel J.
    Kalber, Tammy L.
    Siow, Bernard
    Thorne, Lewis
    Punwani, Shonit
    Jones, Derek K.
    Emberton, Mark
    Pankhurst, Quentin A.
    Lythgoe, Mark F.
    ADVANCED SCIENCE, 2022, 9 (12)
  • [44] Yttrium-Doped Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications
    Kowalik, Przemyslaw
    Mikulski, Jakub
    Borodziuk, Anna
    Duda, Magdalena
    Kaminska, Izabela
    Zajdel, Karolina
    Rybusinski, Jaroslaw
    Szczytko, Jacek
    Wojciechowski, Tomasz
    Sobczak, Kamil
    Minikayev, Roman
    Kulpa-Greszta, Magdalena
    Pazik, Robert
    Grzaczkowska, Paulina
    Fronc, Krzysztof
    Lapinski, Mariusz
    Frontczak-Baniewicz, Malgorzata
    Sikora, Bozena
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (12) : 6871 - 6883
  • [45] Magnetic Resonance Imaging of Endothelial Cells with Vectorized Iron Oxide Nanoparticles
    Abakumov, M. A.
    Goldt, A. E.
    Sokolsky-Papkov, M.
    Zorkina, Y. A.
    Baklaushev, V. P.
    Goodilin, E. A.
    Kabanov, A. V.
    Chekhonin, V. P.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2011, 151 (06) : 726 - 730
  • [46] Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy
    Glover, Amanda L.
    Bennett, James B.
    Pritchett, Jeremy S.
    Nikles, Sarah M.
    Nikles, David E.
    Nikles, Jacqueline A.
    Brazel, Christopher S.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (01) : 231 - 235
  • [47] Iron Oxide Nanoparticles: An Alternative for Positive Contrast in Magnetic Resonance Imaging
    Fernandez-Barahona, Irene
    Munoz-Hernando, Maria
    Ruiz-Cabello, Jesus
    Herranz, Fernando
    Pellico, Juan
    INORGANICS, 2020, 8 (04)
  • [48] Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe
    Chen, Ling
    Xie, Jun
    Wu, Haoan
    Zang, Fengchao
    Ma, Ming
    Hua, Zichun
    Gu, Ning
    Zhang, Yu
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 161 : 339 - 346
  • [49] Iron Oxide Based Nanoparticles for Magnetic Hyperthermia Strategies in Biological Applications
    Pineiro, Yolanda
    Vargas, Zulema
    Rivas, Jose
    Arturo Lopez-Quintela, Manuel
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2015, (27) : 4495 - 4509
  • [50] Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery
    Adam, Alexandre
    Mertz, Damien
    NANOMATERIALS, 2023, 13 (08)