The influence of statistical properties of Fourier coefficients on random Gaussian surfaces

被引:9
作者
de Castro, C. P. [1 ,2 ]
Lukovic, M. [2 ]
Andrade, R. F. S. [1 ]
Herrmann, H. J. [2 ,3 ]
机构
[1] Univ Fed Bahia, Inst Fis, Campus Univ Federacao, BR-40170115 Salvador, BA, Brazil
[2] Swiss Fed Inst Technol, IfB, Computat Phys Engn Mat, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[3] Univ Fed Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
欧洲研究理事会;
关键词
CONFORMAL-INVARIANCE; PERCOLATION; EXPONENTS; GROWTH; TOPOGRAPHY; TRANSPORT;
D O I
10.1038/s41598-017-02135-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many examples of natural systems can be described by random Gaussian surfaces. Much can be learned by analyzing the Fourier expansion of the surfaces, from which it is possible to determine the corresponding Hurst exponent and consequently establish the presence of scale invariance. We show that this symmetry is not affected by the distribution of the modulus of the Fourier coefficients. Furthermore, we investigate the role of the Fourier phases of random surfaces. In particular, we show how the surface is affected by a non-uniform distribution of phases.
引用
收藏
页数:8
相关论文
共 45 条
  • [1] Conformal invariance and stochastic loewner evolution processes in two-dimensional Ising spin glasses
    Amoruso, C.
    Hartmann, A. K.
    Hastings, M. B.
    Moore, M. A.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [2] Site-diluted three-dimensional Ising model with long-range correlated disorder
    Ballesteros, HG
    Parisi, G
    [J]. PHYSICAL REVIEW B, 1999, 60 (18) : 12912 - 12917
  • [3] Barnsley M. F., 1988, The Science of Fractal Images
  • [4] 2D growth processes: SLE and Loewner chains
    Bauer, Michel
    Bernard, Denis
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 432 (3-4): : 115 - 221
  • [5] Inverse turbulent cascades and conformally invariant curves
    Bernard, D.
    Boffetta, G.
    Celani, A.
    Falkovich, G.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (02)
  • [6] Conformal invariance in two-dimensional turbulence
    Bernard, D
    Boffetta, G
    Celani, A
    Falkovich, G
    [J]. NATURE PHYSICS, 2006, 2 (02) : 124 - 128
  • [7] Possible description of domain walls in two-dimensional spin glasses by stochastic Loewner evolutions
    Bernard, Denis
    Le Doussal, Pierre
    Middleton, A. Alan
    [J]. PHYSICAL REVIEW B, 2007, 76 (02):
  • [8] How winding is the coast of Britain? Conformal invariance of rocky shorelines
    Boffetta, G.
    Celani, A.
    Dezzani, D.
    Seminara, A.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (03)
  • [9] Watersheds are Schramm-Loewner Evolution Curves
    Daryaei, E.
    Araujo, N. A. M.
    Schrenk, K. J.
    Rouhani, S.
    Herrmann, H. J.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (21)
  • [10] Distribution of scaled height in one-dimensional competitive growth profiles
    de Assis, T. A.
    de Castro, C. P.
    de Brito Mota, F.
    de Castilho, C. M. C.
    Andrade, R. F. S.
    [J]. PHYSICAL REVIEW E, 2012, 86 (05):