Classification of Hand-Drawn Basic Circuit Components Using Convolutional Neural Networks

被引:3
|
作者
Gunay, Mihriban [1 ]
Koseoglu, Murat [2 ]
Yildirim, Ozal [3 ]
机构
[1] Munzur Univ, Dept Elect & Elect Engn, Tunceli, Turkey
[2] Inonu Univ, Dept Elect & Elect Engn, Malatya, Turkey
[3] Munzur Univ, Dept Comp Engn, Tunceli, Turkey
来源
2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020) | 2020年
关键词
Deep learning; classification; CNN; circuit components; RECOGNITION;
D O I
10.1109/hora49412.2020.9152866
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, the Convolutional Neural Network (CNN) architecture, which is one of the deep learning architectures, is used to classify the basic circuit components drawn by hand. During the training and testing stages of the model, a new dataset containing images of 863 circuit components manually drawn by different people is created. The data set contains images of four different classes of circuit components such as resistor, inductor, capacitor and voltage source. All images have been fixed to the same size and converted to grayscale to increase recognition performance and reduce process complexity. In the study, training for four classes is performed with CNN architecture. Based on the CNN architecture, four new CNN models are employed with different the number of layers. The training and validation results of these models are compared separately, the model with the highest training and validation performance is observed with four layer CNN model (CNN-4). This model obtained 84.41% accuracy rate at classification task.
引用
收藏
页码:134 / 138
页数:5
相关论文
共 50 条
  • [21] Classification of Optical Coherence Tomography using Convolutional Neural Networks
    Saraiva, A. A.
    Santos, D. B. S.
    Pedro, Pimentel
    Moura Sousa, Jose Vigno
    Fonseca Ferreira, N. M.
    Batista Neto, J. E. S.
    Soares, Salviano
    Valente, Antonio
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 168 - 175
  • [22] Hyperspectral Data Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2129 - 2132
  • [23] An Initial Investigation into Using Convolutional Neural Networks for Classification of Drones
    Dale, Holly
    Baker, Chris
    Antoniou, Michail
    Jahangir, Mohammed
    2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR), 2020, : 618 - 623
  • [24] Using Convolutional Neural Networks for Plant Classification
    Razavi, Salar
    Yalcin, Hulya
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [25] Apparel Classification Using Convolutional Neural Networks
    Eshwar, S. G.
    Prabhu, Gautham Ganesh J.
    Rishikesh, A. V.
    Charan, N. A.
    Umadevi, V
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON ICT IN BUSINESS INDUSTRY & GOVERNMENT (ICTBIG), 2016,
  • [26] Solar Event Classification Using Deep Convolutional Neural Networks
    Kucuk, Ahmet
    Banda, Juan M.
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 118 - 130
  • [27] Flotation froth image classification using convolutional neural networks
    Zarie, M.
    Jahedsaravani, A.
    Massinaei, M.
    MINERALS ENGINEERING, 2020, 155
  • [28] Flood Water Depth Classification Using Convolutional Neural Networks
    Gandhi, Jinang
    Gawde, Sarah
    Ghorai, Arnab
    Dholay, Surekha
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 284 - 289
  • [29] Using Convolutional Neural Networks for Emoticon Classification
    Burnik, K.
    Knezevic, D. Bjelobrk
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1614 - 1618
  • [30] Convolutional Neural Networks for Font Classification
    Tensmeyer, Chris
    Saunders, Daniel
    Martinez, Tony
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 985 - 990