Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence

被引:172
作者
Alharbi, Fahhad H. [1 ]
Kais, Sabre [1 ,2 ]
机构
[1] Qatar Energy & Environm Res Inst, Doha, Qatar
[2] Purdue Univ, Dept Chem, Phys & Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
关键词
Non-conventional solar cell; Solar cell efficiency; Photosynthesis; Quantum coherence; Shockley and Queisser limit; DETAILED BALANCE LIMIT; MULTIPLE EXCITON GENERATION; PEROVSKITE SOLAR-CELLS; CARRIER-MULTIPLICATION; THIN-FILM; ENERGY-TRANSFER; THERMOPHOTOVOLTAIC GENERATION; BACTERIOCHLOROPHYLL PROTEIN; SEMICONDUCTOR NANOCRYSTALS; ENVIRONMENTAL FLUCTUATIONS;
D O I
10.1016/j.rser.2014.11.101
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this review, we present and discussed the main trends in photovoltaics (PV) with emphasize on the conversion efficiency limits. The theoretical limits of various photovoltaics device concepts are presented and analyzed using a flexible detailed balance model where more discussion emphasize is toward the losses. Also, few lessons from nature and other fields to improve the conversion efficiency in photovoltaics are presented and discussed. From photosynthesis, the perfect exciton transport in photosynthetic complexes can be utilized for PV. Also, we present some lessons learned from other fields like recombination suppression by quantum coherence. For example, the coupling in photosynthetic reaction centers is used to suppress recombination in photocells. (C) 2014 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1073 / 1089
页数:17
相关论文
共 217 条
[1]   Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer [J].
Abasto, D. F. ;
Mohseni, M. ;
Lloyd, S. ;
Zanardi, P. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1972) :3750-3770
[2]   Quantum oscillatory exciton migration in photosynthetic reaction centers [J].
Abramavicius, Darius ;
Mukamel, Shaul .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (06)
[3]   Theoretical efficiency of 3rd generation solar cells: Comparison between carrier multiplication and down-conversion [J].
Abrams, Ze'ev R. ;
Gharghi, Majid ;
Niv, Avi ;
Gladden, Chris ;
Zhang, Xiang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 99 :308-315
[4]   Broadband solar absorption enhancement via periodic nanostructuring of electrodes [J].
Adachi, Michael M. ;
Labelle, Andre J. ;
Thon, Susanna M. ;
Lan, Xinzheng ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
SCIENTIFIC REPORTS, 2013, 3
[5]  
Adams W.G., 1876, Proceedings of the Royal Society London, V25, P113, DOI DOI 10.1098/RSPL.1876.0024
[6]   How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria [J].
Adolphs, Julia ;
Renger, Thomas .
BIOPHYSICAL JOURNAL, 2006, 91 (08) :2778-2797
[7]   Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials [J].
Alharbi, Fahhad ;
Bass, John D. ;
Salhi, Abdelmajid ;
Alyamani, Ahmed ;
Kim, Ho-Cheol ;
Miller, Robert D. .
RENEWABLE ENERGY, 2011, 36 (10) :2753-2758
[8]   Carrier multiplication applicability for photovoltaics; a critical analysis [J].
Alharbi, Fahhad H. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (12)
[9]   Organic Ternary Solar Cells: A Review [J].
Ameri, Tayebeh ;
Khoram, Parisa ;
Min, Jie ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2013, 25 (31) :4245-4266
[10]  
Andreev VM, 2004, AIP CONF PROC, V738, P96, DOI 10.1063/1.1841884