Improving Thompson's Conjecture for Suzuki Groups

被引:2
作者
Akhlaghi, Zeinab [1 ]
Khatami, Maryam [2 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Fac Math & Comp Sci, Tehran 15914, Iran
[2] Univ Isfahan, Dept Math, Esfahan, Iran
关键词
Conjugacy classes; Suzuki groups; Thompson's conjecture; CONJUGACY CLASS SIZES;
D O I
10.1080/00927872.2015.1065871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and cs(G) be the set of conjugacy class sizes of G. In 1987, J. G. Thompson conjectured that, if G is a finite group with Z(G)=1 and M is a nonabelian simple group satisfying that cs(G)=cs(M), then GM. This conjecture has been proved for Suzuki groups in [5]. In this article, we improve this result by proving that, if G is a finite group such that cs(G)=cs(Sz(q)), for q=2(2m+1), then GSz(q)xA, where A is abelian. We avoid using classification of finite simple groups in our proofs.
引用
收藏
页码:3927 / 3932
页数:6
相关论文
共 46 条
  • [41] Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions
    Vera Lopez, Antonio
    Martinez, Luis
    Vera Perez, Antonio
    Vera Perez, Beatriz
    Basova, Olga
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 414 - 444
  • [42] Linear groups with Borel's property
    Bou-Rabee, Khalid
    Larsen, Michael
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (05) : 1293 - 1330
  • [43] ITO'S THEOREM ON GROUPS WITH TWO CLASS SIZES REVISITED
    Alemany, Elena
    Beltran, Antonio
    Felipe, Maria Jose
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 85 (03) : 476 - 481
  • [44] THE PROOF OF ORE'S CONJECTURE [after Ellers-Gordeev and Liebeck-O'Brien-Shalev-Tiep]
    Malle, Gunter
    ASTERISQUE, 2014, (361) : 325 - +
  • [45] Distinguished orbits and the L-S category of simply connected compact Lie groups
    Hunziker, Markus
    Sepanski, Mark R.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (15) : 2443 - 2451
  • [46] Weakly commensurable S-arithmetic subgroups in almost simple algebraic groups of types B and C
    Garibaldi, Skip
    Rapinchuk, Andrei
    ALGEBRA & NUMBER THEORY, 2013, 7 (05) : 1147 - 1178