Belief networks, hidden Markov models, and Markov random fields: A unifying view

被引:46
|
作者
Smyth, P [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
基金
美国国家航空航天局;
关键词
graphical models; belief networks; Bayesian networks; hidden Markov models; Markov random fields; error-correcting codes; Kalman filters;
D O I
10.1016/S0167-8655(97)01050-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of graphs to represent independence structure in multivariate probability models has been pursued in a relatively independent fashion across a wide variety of research disciplines since the beginning of this century. This paper provides a brief overview of the current status of such research with particular attention to recent developments which have served to unify such seemingly disparate topics as probabilistic expert systems, statistical physics, image analysis, genetics, decoding of error-correcting codes, Kalman filters, and speech recognition with Markov models. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:1261 / 1268
页数:8
相关论文
共 50 条
  • [41] Strong Markov Properties for Markov Random Fields
    Kimberly K. J. Kinateder
    Journal of Theoretical Probability, 2000, 13 : 1101 - 1114
  • [42] Strong Markov properties for Markov random fields
    Kinateder, KKJ
    JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (04) : 1101 - 1114
  • [43] Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
    Adams, Stephen
    Beling, Peter A.
    Cogill, Randy
    IEEE ACCESS, 2016, 4 : 1642 - 1657
  • [44] Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection
    Lourenço, Inês
    Mattila, Robert
    Rojas, Cristian R.
    Hu, Xiaoming
    Wahlberg, Bo
    Journal of Systems Science and Complexity, 2021, 34 (05) : 1801 - 1820
  • [45] Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection
    Inês Lourenço
    Robert Mattila
    Cristian R. Rojas
    Xiaoming Hu
    Bo Wahlberg
    Journal of Systems Science and Complexity, 2021, 34 : 1801 - 1820
  • [46] Probabilistic independence networks for hidden Markov probability models
    Smyth, P
    Heckerman, D
    Jordan, MI
    NEURAL COMPUTATION, 1997, 9 (02) : 227 - 269
  • [47] CONTRIBUTION OF BELIEF FUNCTIONS TO HIDDEN MARKOV MODELS WITH AN APPLICATION TO FAULT DIAGNOSIS
    Ramasso, Emmanuel
    2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 97 - 102
  • [48] Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection
    LOUREN?O Inês
    MATTILA Robert
    ROJAS Cristian R.
    HU Xiaoming
    WAHLBERG Bo
    JournalofSystemsScience&Complexity, 2021, 34 (05) : 1801 - 1820
  • [49] Hidden Markov Models: Inverse Filtering, Belief Estimation and Privacy Protection
    Lourenco, Ines
    Mattila, Robert
    Rojas, Cristian R.
    Hu Xiaoming
    Wahlberg, Bo
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (05) : 1801 - 1820
  • [50] Refining hidden Markov models with recurrent neural networks
    Wessels, T
    Omlin, CW
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL II, 2000, : 271 - 276