Belief networks, hidden Markov models, and Markov random fields: A unifying view

被引:46
|
作者
Smyth, P [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
基金
美国国家航空航天局;
关键词
graphical models; belief networks; Bayesian networks; hidden Markov models; Markov random fields; error-correcting codes; Kalman filters;
D O I
10.1016/S0167-8655(97)01050-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of graphs to represent independence structure in multivariate probability models has been pursued in a relatively independent fashion across a wide variety of research disciplines since the beginning of this century. This paper provides a brief overview of the current status of such research with particular attention to recent developments which have served to unify such seemingly disparate topics as probabilistic expert systems, statistical physics, image analysis, genetics, decoding of error-correcting codes, Kalman filters, and speech recognition with Markov models. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:1261 / 1268
页数:8
相关论文
共 50 条
  • [21] Detecting Markov random fields hidden in white noise
    Arias-Castro, Ery
    Bubeck, Sebastien
    Lugosi, Gabor
    Verzelen, Nicolas
    BERNOULLI, 2018, 24 (4B) : 3628 - 3656
  • [22] A New Energy Model for the Hidden Markov Random Fields
    Sublime, Jeremie
    Cornuejols, Antoine
    Bennani, Younes
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT II, 2014, 8835 : 60 - 67
  • [23] Defect detection using hidden Markov random fields
    Dogandzic, A
    Eua-anant, N
    Zhang, BH
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 24A AND 24B, 2005, 760 : 704 - 711
  • [24] Pairwise and Hidden Markov Random Fields in Image Segmentation
    Courbot, Jean-Baptiste
    Mazet, Vincent
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2458 - 2462
  • [25] MAP estimation for hidden discrete Markov random fields
    Elliott, RJ
    Aggoun, L
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (01) : 83 - 89
  • [26] Tandem hidden Markov models using deep belief networks for offline handwriting recognition
    Roy, Partha Pratim
    Zhong, Guoqiang
    Cheriet, Mohamed
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (07) : 978 - 988
  • [27] Tandem hidden Markov models using deep belief networks for offline handwriting recognition
    Partha Pratim Roy
    Guoqiang Zhong
    Mohamed Cheriet
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 978 - 988
  • [28] Pruning Boltzmann networks and Hidden Markov Models
    Pedersen, MW
    Stork, DG
    THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 258 - 261
  • [29] An introduction to hidden Markov models and Bayesian networks
    Ghahramani, Z
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2001, 15 (01) : 9 - 42
  • [30] Multilevel belief propagation for fast inference on Markov Random Fields
    Xiong, Liang
    Wang, Fei
    Zhang, Changshui
    ICDM 2007: PROCEEDINGS OF THE SEVENTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 371 - 380