Belief networks, hidden Markov models, and Markov random fields: A unifying view

被引:46
|
作者
Smyth, P [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
基金
美国国家航空航天局;
关键词
graphical models; belief networks; Bayesian networks; hidden Markov models; Markov random fields; error-correcting codes; Kalman filters;
D O I
10.1016/S0167-8655(97)01050-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of graphs to represent independence structure in multivariate probability models has been pursued in a relatively independent fashion across a wide variety of research disciplines since the beginning of this century. This paper provides a brief overview of the current status of such research with particular attention to recent developments which have served to unify such seemingly disparate topics as probabilistic expert systems, statistical physics, image analysis, genetics, decoding of error-correcting codes, Kalman filters, and speech recognition with Markov models. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:1261 / 1268
页数:8
相关论文
共 50 条
  • [1] HIDDEN MARKOV RANDOM FIELDS
    Kuensch, Hans
    Geman, Stuart
    Kehagias, Athanasios
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (03): : 577 - 602
  • [2] Estimation for hidden Markov random fields
    Elliott, RJ
    Aggoun, L
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 343 - 351
  • [3] ON MARKOV MODELS OF RANDOM FIELDS
    江泽培
    Acta Mathematicae Applicatae Sinica(English Series), 1987, (04) : 328 - 341
  • [4] Modelling Nonstationary Spatial Lag Models with Hidden Markov Random Fields
    Ghiringhelli, C.
    Bartolucci, F.
    Mira, A.
    Arbia, G.
    SPATIAL STATISTICS, 2021, 44
  • [5] Approximating hidden Gaussian Markov random fields
    Rue, H
    Steinsland, I
    Erland, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 877 - 892
  • [6] Learning Heterogeneous Hidden Markov Random Fields
    Liu, Jie
    Zhang, Chunming
    Burnside, Elizabeth
    Page, David
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 576 - 584
  • [7] DOMAIN ADAPTATION WITH HIDDEN MARKOV RANDOM FIELDS
    Jacobs, Jan-Pieter
    Thoonen, Guy
    Tuia, Devis
    Camps-Valls, Gustavo
    Haest, Birgen
    Scheunders, Paul
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3112 - 3115
  • [8] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (09) : 795 - 796
  • [9] Markov models — hidden Markov models
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 795 - 796
  • [10] Fingerspelling Recognition with Support Vector Machines and Hidden Conditional Random Fields A Comparison with Neural Networks and Hidden Markov Models
    de Souza, Cesar Roberto
    Pizzolato, Ednaldo Brigante
    Anjo, Mauro dos Santos
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2012, 2012, 7637 : 561 - 570