R/S Analysis of the Dst Index

被引:2
作者
Kiselev, B. V. [1 ]
机构
[1] Russian Acad Sci, Pushkov Inst Terr Magnetism Ionosphere & Radio Wa, St Petersburg Branch, St Petersburg 191023, Russia
关键词
SOLAR;
D O I
10.1134/S0016793217030069
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The paper addresses estimation of the Hurst exponent for time series of the hourly values of the Dst index for the period from 1957 to 2011. It is found that the Hurst exponent is 0.79-0.94 for yearly intervals and 0.8-1.0 for monthly intervals. Based on R/S graphs, the Dst cycles are identified; they range from 3-4 months to 2.2 years and from 8.5 to 22 years in length. It is shown that a Dst time series can be quite satisfactorily described by an alpha-stable Levy process.
引用
收藏
页码:326 / 334
页数:9
相关论文
共 34 条
[1]  
[Anonymous], 1988, From Clocks to Chaos. The Rhythms of Life
[2]   From pre-storm activity to magnetic storms: a transition described in terms of fractal dynamics [J].
Balasis, G. ;
Daglis, I. A. ;
Kapiris, P. ;
Mandea, M. ;
Vassiliadis, D. ;
Eftaxias, K. .
ANNALES GEOPHYSICAE, 2006, 24 (12) :3557-3567
[3]  
Balasis G, 2011, IAGA SPEC SOPRON, V3, P211, DOI 10.1007/978-94-007-0501-2_12
[4]   Dynamical complexity in Dst time series using non-extensive Tsallis entropy [J].
Balasis, Georgios ;
Daglis, Ioannis A. ;
Papadimitriou, Constantinos ;
Kalimeri, Maria ;
Anastasiadis, Anastasios ;
Eftaxias, Konstantinos .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (14)
[5]   ON THE WEIERSTRASS-MANDELBROT FRACTAL FUNCTION [J].
BERRY, MV ;
LEWIS, ZV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1980, 370 (1743) :459-484
[6]  
Chernykh Yu. V, 2003, T SANKT PETERBURGSKO, V1, P126
[7]  
Chistyakov V.F., 1997, SOLNECHNYE TSIKLY KO
[8]  
Feder J., 1988, Fractals
[9]  
Hurst H., P I CIVILENGINEERS, V5, P519
[10]  
HURST HE, 1951, T AM SOC CIV ENG, V116, P770