Spectrum and bifurcation for semilinear elliptic problems in RN

被引:8
作者
Dai, Guowei [1 ]
Yao, Jinghua [2 ]
Li, Fengquan [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Indiana Univ, Dept Math, Bloomington, IN 47408 USA
关键词
Bifurcation; Spectrum; Nodal solutions;
D O I
10.1016/j.jde.2017.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the following semilinear elliptic problem {-Delta u = lambda m(x)f(u) in R-N, u -> 0 as vertical bar x vertical bar -> +infinity, where lambda is a real parameter and m is a weight function which may be sign-changing. For the linear case, i.e., f (u) = u, we investigate the spectral structure. For the semilinear case, we study the existence and asymptotic behavior of one-sign and nodal solutions by bifurcation method. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:5939 / 5967
页数:29
相关论文
共 14 条
[1]  
[Anonymous], HIROSHIMA MATH J
[2]  
[Anonymous], 1980, Comm. Partial Differential Equations, DOI DOI 10.1080/03605308008820162
[3]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[4]  
2-D
[5]   On the scattering problem for the Camassa-Holm equation [J].
Constantin, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008) :953-970
[6]   STRUCTURE OF SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J].
DANCER, EN .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (11) :1069-1076
[8]   LINEAR AND SEMILINEAR EIGENVALUE PROBLEMS IN R(N) [J].
EDELSON, AL ;
RUMBOS, AJ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (1-2) :215-240
[9]   Global solution branches for semilinear equations in R(n) [J].
Edelson, AL ;
Furi, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (09) :1521-1532
[10]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd